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The properties of multispecies biofilms are determined by how species are arranged in space. How
these patterns emerge is a complex and largely unsolved problem. Here, we synthesize the known
factors affecting pattern formation, identify the interdependencies and feedback loops coupling them,
and discuss approaches to disentangle their effects. Finally, we propose an interdisciplinary research
program that could create a predictive understanding of pattern formation in microbial communities.

Our understanding of microbes is largely based on experiments done in
well-mixed liquid cultures,whichare relatively easy to control andhavehigh
repeatability.However, suspending cells andmixing them in liquid removes
an important part of the reality that most microbes face in their natural
environments: a surface to stick to and grow on, a restriction in movement
due to crowding in densely packed populations, and the ability to sub-
stantially alter the local physical and chemical environment through the
uptake and release of molecules1–7.

A community’s spatial structure can either be externally imposed
through the environment8,9 or emerge through the self-organization of
cells10–12. Inmanynatural environments, the availability ofwater, nutrients, or
space limits growth to distinct locations, e.g., to pores in the soil, or to liquid
droplets on surfaces. As a result, microbial communities become structured
into metapopulations of spatially segregated, but potentially coupled,
sub-populations13. However, spatial structure can also emerge in the absence
of external—abiotic—spatial structure (e.g., see examples in Fig. 1)14–19.
In these cases, spatial structure emerges as a consequence of how cell
grow, move, and arrange themselves in space. Although both forms of
spatial structure have important ecological and evolutionary consequences,
here we focus on spatial structure formed through emergent self-
organization.

Self-organized spatial patterns emerge from the growth andmovement
of individual cells. A cell’s growth andmovement are determined by its local
biological, chemical, and physical microenvironment. Cells, in turn, also
shape their local environment. A community’s spatial arrangement is thus a
complex property that emerges from the feedback loops between cells and
their environment. This spatial arrangement is an essential property that
affects the dynamics, function and evolution of microbial communities20–25.
Understanding the ecology and evolution of microbial communities

therefore requires insights into how spatial patterns arise in structured cell
populations.

Whilemany studies have identified factors affecting pattern formation,
we still lack a general predictive understanding of how the properties of cells
and their environment affect spatial patterning in multispecies commu-
nities. Progress has been slow for several reasons. Firstly, many studies have
used synthetic communities consisting of two nearly isogenic strains with
engineered interactions26–30. It is still unclear if and how these findings
generalize to communities consisting of multiple species that differ in their
physical and biological properties. A number of studies have started using
natural multispecies communities31–36, recently reviewed in2–4,6,7,37, but the
increased complexity of these systems has made it challenging to derive
quantitative predictions for how the properties of cells and/or their envir-
onment determine the observed patterns38. Secondly, pattern formation is
shaped by a diverse set of properties of cells and their environments
including cell shape, inter-species interactions, initial cell density, or fluid
flow38–41. Many of these have been studied in detail in isolation; however,
they are often interdependent. This complicates the interpretation of
experiments and should ideally be taken into account already during
experimental design. Moreover, the relationship between the properties of
cells, their interactions, and the resulting spatial patterns is complex: Dif-
ferent mechanisms can give rise to highly similar patterns (Fig. 2), while
subtle changes in the environment can significantly change the resulting
patterns42. Identifyingwhichparameters andprocessesunderlie anobserved
pattern is thus not obvious, and how the unique properties of cells and their
environment drive pattern formation inmicrobial communities remains an
important unsolved question.

In this review, we analyze the biological, chemical, and physical
factors that drive the spatial patterning of microbial communities and
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highlight the interdependencies, in the form of feedback loops, that
connect them. We describe the experimental setups commonly used to
study pattern formation and emphasize the relevance of different factors
in each setup. Finally, we propose a set of complementary modeling
frameworks that can be used to describe and predict observed patterns.
For simplicity, we primarily focus on two-species communities in lab-
based setups. However, most of the concepts discussed here can be
extended to more complex natural systems, and our overall aim is to lay
the foundation of a framework to identify general principles governing
pattern formation in microbial communities. By synthesizing existing
research and concepts, we highlight the considerations that should be
taken into account when studying spatial patterns and emphasize the
value of integrating knowledge across the fields of microbial ecology and
biophysics.

What generates spatial patterns?
A spatial pattern is given by the position in space of each cell type in a
microbial community. These patterns can be described using several sum-
mary statistics, for example by calculating the community composition or
the degree of intermixing of different species (recently reviewed in ref. 43).
Many different metrics have been developed, and we give a non-exhaustive
overview in Table 118,40,44–49. Importantly, these summary statistics depend
on the scale atwhich the system is described46: cells of different speciesmight

appear to mix at a certain scale, but at small enough scales, they are often
surrounded by cells of their own type.

Pattern formation in microbial communities depends on a
high-dimensional parameter space. The factors affecting spatial patterning
can be broadly grouped into three categories: properties of individual
cells, properties of their local environment, and properties of the
feedback loops through which cells and environments affect one another
(Table 2 and Fig. 3a).

Cells
Spatial patterns emerge from the positions of individual cells in space. These
positions are dynamic: Over time, cells grow and move, and, as a result,
spatial patterns can change. Three factors related to individual cells are
therefore relevant to pattern formation: initial positions, growth and death,
and movement.

First, as also illustrated in Fig. 2, the initial positions of cells relative to
one another can affect pattern formation40. In many experiments, such as
colony range expansions, variation in the initial ratios of cell types, cell
densities, and cell positioning can generate different patterns30,50–52. While it
is known that the initial configuration of cells is relevant to pattern for-
mation, systematically studying the relationships between initial positions
and spatial structure in the lab is challenging because it is difficult to
experimentally control the precise positions of different species (but see

Fig. 1 | Spatially organized microbial commu-
nities in nature. aBacteria (blue) in a granule from a
wastewater treatment plant visualized by fluores-
cence in situ hybridization (FISH). Ammonia-
oxidizing bacteria (red) and nitrite-oxidizing bac-
teria (green) exhibit spatial patterning. b In the
pylorus region of the honeybee gut, Gilliamella
(green) and Frischella (red) grow in overlapping but
spatially distinct niches, here shown by FISH ima-
ging. Images generously provided by a) Nicolas Der-
lon (Eawag) and b) Philipp Engel (University of
Lausanne).

a) b)

Bacteria

NO2
--oxidizing bacteria

NH3-oxidizing bacteria
Frischella
Gilliamella

a) b) c) d)

Fig. 2 | Similar spatial patterns can arise from different processes. Two-
dimensional colonies consisting of two species were simulated using the gro toolbox154.
Each colony starts from two cells of each species, which have the same (basal) growth
rate. a No intermixing is observed when the species start from a segregated arrange-
ment. b Intermixing is observed when species start from a mixed arrangement.

c Intermixing is also observed when species promote each other’s growth in a
mutualistic interaction. d Intermixing is also observed when species are motile, and
move as they grow. While the precise patterns in b-d are not identical, each displays
intermixing, and it can therefore be challenging to identify the drivers of this pattern.
The parameters used in the simulations are listed in Supplementary Note 1.
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Table 1 | Metrics to quantify spatial patterns

Metric Description Example

Community
composition

Quantifies the number and type of all cells, ignoring their spatial locations. • Absolute abundances
• Relative abundances

Assortment or
segregation

Quantifies the relative spatial locations of cells of the same or of different
types. The observed distribution of distances is compared to the expected
one if cells were positioned randomly. Assortment refers to cells of two types
being closer to each other than expected, while segregation refers to cells of
two types being further away than expected.

• Ripley’s K-function44

• Assortment value18

• Segregation index40,45,46

• Fourier decomposition of colony spatial pattern47

Sector size Quantifies the average size of sectors of a single species in expanding
colonies.

• Sector width27

Cluster size Quantifies the average size of sectors of a single species in mixed-species
biofilms.

• Spatial correlation length161,162

Intermixing Quantifies the frequency of boundaries between clonal clusters or sectors of
different cell types.

• Intermixing index48

• Frequency space analysis47

• Boundaries over area85

Boundary shape Quantifies the shape of the boundaries between clonal clusters or sectors. • Fractal dimension152,163

• Contour fluctuations49

This table gives a non-exhaustive overview of commonmetrics used to quantify spatial patterns (see ref. 43 for additional metrics). Different metrics are often correlated with one another, e.g., for a given
community composition, more intermixing implies smaller sector sizes and lower segregation scores. Moreover, manymetrics are scale-dependent, e.g., segregation scores depend on the length scale at
which the pattern is quantified.

Table 2 | Definitions of factors and feedback loops

Initial Conditions

Initial population The identity, location, and state of all cells present at the start of an experiment or simulation.

Initial chemical environment The concentration profiles of all chemicals initially present in the environment at the start of an experiment or simulation.

Initial physical environment The initial state of thephysical environment, includingboundary conditions, flowprofiles, etc. at the start of an experiment
or simulation.

Primary factors

Growth The rate at which cells divide and form new biomass.

Movement The rate and direction in which cells move either due to active movement or passive movement in response to external
forces.

Chemical environment The type, concentration, and distribution of all chemicals that are present in a cell’s environment as well as their fluxes. It
includes the concentrations of nutrients, toxins, signaling molecules, matrix components, and surfactants.

Physical environment The set of all physical factors that exert a force or physical constraint on cells or that otherwise affect cell growth and
movement. It includes the thermodynamic state (e.g., temperature), geometry (e.g., dimensionality, boundaries), surface
properties (e.g., viscosity, roughness), and hydrodynamic properties (e.g., water activity and flow rate) of the
environment. Cells themselves are part of the physical environment aswell, because cell crowding can lead to significant
friction and pressure.

Coupling and feedback loops between factors

Coupling between chemical and physical
environment

A single factor (e.g., surfactant production) can simultaneously affect the chemical and physical environment.

Coupling between growth and movement Cell growth often leads tomovement (e.g., as cells increase in volume theypush around their neighbors), whilemovement
affects cell growth by moving a cell to a different local environment (e.g., moving to an area with more favorable
environmental conditions).

Chemical environment-growth feedback The chemical environment influences cell growth by determining a cell’s metabolic activity and growth. In turn, cellular
metabolism changes the chemical environment, as growth can cause depletion of nutrients and accumulation of
byproducts.

Physical environment-movement feedback The physical environment influences cell movement by imposing forces and constraints (e.g., cell movement is
constrained by cell crowding or boundaries of a growth chamber). In turn, cell movement changes the physical
environment (e.g., movement to a new region increases cell density and crowding in that region)

Chemical environment-movement feedback The chemical environment influences cell movement through chemotaxis. In turn, movement can change chemical
gradients, as a cell can move to a new area and secrete chemicals locally.

Physical environment-growth feedback The physical environment influences cell growth directly through temperature and pressure. Physical features such as
flow can also influence chemical distribution, thereby influencing growth indirectly. In turn, cell growth contributes to
physical effects, such as pressure from cell crowding.

Emergent interactions

Metabolic interactions Metabolic interactions emerge as neighboring cells become coupled through their shared chemical microenvironment.

Physical interactions Physical interactions emerge as neighboring cells become coupled through their shared physical microenvironment.

Here we give detailed definitions of all important factors and feedback loops that need to be considered to understand, model, and predict pattern formation.
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ref. 45). Stochasticity therefore often influences the initial configuration of
cells in experiments, which can subsequently shape pattern formation.
However, certain statistical properties of spatial patterns, such as their
composition, or degree of assortment, can be robust to these stochastic
fluctuations27,28.

The growth and death rates of cells also shape spatial patterns. The
growth rate of cells relative to that of their neighbors determines which cell
type will occupy previously empty positions or push neighboring cells
away53. Death rates can also influence patterns by freeing up space18,54 or by
changing where growth happens55. The growth and death rates of cells are
primarily determined by how cells respond to their local chemical56 and
physical environment57–60, which will be discussed in subsequent sections.
However, they can also be modified through direct contact-dependent
interactionswithneighboring cells61.Moreover, cell deathdue to phages and
predation can also change spatial patterns18,54,55.

Finally, active and passive movement can affect pattern
formation38,50,62,63. Activemotility occurs whenmicrobes use energy tomove
in their environments using appendages, such as flagella and pili64–66. This
movement can be undirected or directed by environmental stimuli

(e.g., chemotaxis)66,67. Passive movement occurs in response to an external
physical force, such as fluid flow68, which can affect the initial distribution of
cells on a surface and thereby influence the degree of segregation69. More-
over, as microbes grow and crowd their local environments, cells can also
move as they push against one another70. Both active and passivemovement
are constrained by the geometry of a cell’s environment71 and are affected by
a cell’s physical properties, such as it size, shape, and adhesiveness72. For
example, differences in cell shape or size can lead to spontaneous sorting of
cells39.

Local physical and chemical environment
Physical and chemical environmental properties influence pattern forma-
tion by affecting the growth and movement of cells (Fig. 3b). In spatially
structured systems, environmental properties are often heterogeneous even
at the micrometer scale, with each cell experiencing a different local
microenvironment73.

A cell’s physical environment is the set of all properties that affect
cellular growth and movement through physical mechanisms, such as
temperature, surface properties, and hydration levels (see Table 2)74–76. The

Fig. 3 | Factors affecting pattern formation, and their interdependencies. a The
growth and movement of a cell is determined by properties of the chemical and
physical environment, which are in turn influenced by the cell’s growth and
movement. This leads to feedback loops between cells and their environments. bThe
local environmental changes caused by a cell’s activity can be transmitted to the local

environment of neighboring cells, leading to cell-cell interactions. c These processes
cause an initial population to grow andmove according to a changing environment,
leading to the emergence of spatial patterns. Visual design of thefigurewas improved
by Joana Carvalho.
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physical environment strongly affects cell growth and movement through
the effects of physical forces (recently reviewed in refs. 57,58). These forces
can be exerted by physical constraints of the setup in which cells are
embedded, the media in which they grow, or by other cells30,77,78. For
example, physical constraints that limit the space available for cells to grow,
and friction with the boundaries of this space, can influence the extent to
which cells tend to stay trapped in the environment30. The environment can
also exert different forces on cells depending on their viscosity. A more
viscous environment can limit cell movement and promote segregation of
cell types78. Cells themselvesmodify the physical environment. For example,
cellsmay produce extracellularmatrix, which can regulate osmotic pressure
and promote expansion of the community79. Additionally, by growing and
occupying space, cells contribute to local crowding,which exerts pressure on
other cells57. This crowding can lead to collective cell motion70, affect
competition outcomes53, or even lead to growth arrest80. The effect of these
forces depends on cell properties such as size, shape, and rigidity30,39,81.

A cells’s chemical environment is defined by the concentration and
fluxes of metabolites, toxins, and other chemicals. It affects growth by
determining the rates at which cells accumulate biomass and divide56,82. The
chemical environment can also influence cell movement through chemo-
taxis along chemical gradients or through a general upregulation of
motility66,83. The overall nutrient availability is also an important factor, as it
determines the final density that is reached before growth ceases. Chemical
features cannot always be disentangled from physical effects. For instance,
chemicals such as surfactants and exopolysaccharides change the physical

environment by affecting surface tension and viscosity78. Physical properties
likefluidflowcan alsomodify the distribution ofmolecules in space, altering
the chemical landscape84.Moreover, higher crowding of cells leads to higher
uptake of metabolites and increases the heterogeneity of the chemical
environment23,73,85–87.

Feedback loops between cells and their environments
While environmental properties affect cellular growth andmovement, cells,
in turn, influence the environment (Fig. 3b). The physical environment is,
for example, affectedby cell crowding81,88, while the chemical environment is
altered through the depletion of nutrients, and secretion or leakage of
metabolites20,23,89,90. Moreover, the effect of a cell’s environment on its
movement and growth depends on the cell’s metabolic capabilities, motility
machinery, cell shape, surface properties, and many other cellular
properties58,91. There are thus many interdependencies and feedback loops
between cellular and environmental properties.

The tight feedback loops between cells and their environment have two
key implications for spatial patterns. First, the factors affecting spatial pat-
terning cannot be treated independently. Because growth, movement, and
environmental properties are intertwined, it is challenging to isolate the
effect of a single factor on spatial structure from experimental data. For
example, changing the flow rate in a microfluidic setup changes both the
physical forces exerted on the microbes while also increasing the rates at
which nutrients are introduced and metabolic byproducts removed. If the
change in flow rate leads to a change in the spatial structure, it is thus
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Fig. 4 | Importance of disentangling factors driving pattern formation. Pattern
formation of two cross-feeding amino acid auxotrophic strains, simulated using the
gro toolbox154. One of the two strains is non-motile (blue), while the other is motile
(orange) with motility increasing with amino acid concentration. The interaction
strength is tuned by setting the amino acid concentrations in the media, with higher
concentrations reducing the metabolic dependency between the two strains. In the
simulations, eachmicrocolony is initialized by two cells from each type. aThe amino
acid concentration in the media influences intermixing non-monotonically. To

better understand the pattern formation in this mixed colony, we consider the self-
patterns formed by each strain individually in varying media compositions. These
can be visualized using differential color labeling where half the founder cells of each
species are colored in gray. b Amino acid concentrations do not substantially affect
the patterns for the blue species. c Amino acid concentrations increase intermixing
in the orange species as its motility increases at higher amino acid concentrations.
The parameters used in the simulations are listed in Supplementary Note 1.

https://doi.org/10.1038/s41522-025-00666-1 Review

npj Biofilms and Microbiomes |           (2025) 11:32 5

www.nature.com/npjbiofilms


challenging to pin down its causes. Careful quantification of these different
effects, and their interactions, is therefore crucial to gaining mechanistic
insights into pattern formation92,93.

Second, because nearby cells share the samemicro-environment, these
feedback loops give rise to emergent cell-cell interactions (recently reviewed
in refs. 14,16 formetabolic and refs. 58,94 for physical interactions).When a
cell modifies its local chemical or physical environment, this change can
affect neighboring cells and cause them to grow or move
differently85,86,89,95–98, which in turn influences spatial structure26,52,90,99–101. For
example, a given microbial cell can “cross-feed" others by secreting meta-
bolites that change the chemical environment102–104, or it can cause crowding
by moving to a new position, both of which influence the growth and
movement of neighboring cells53,80,105,106.

The challenges of interpreting spatial patterns
In this section, we will use a simple conceptual model to illustrate how
the interdependencies discussed above can make it challenging to create
a predictive understanding of how properties of cells and their envir-
onments affect spatial patterning. Let us consider pattern formation in
colonies of two auxotrophs, e.g., two strains that each cannot produce an
essential amino acid, but that can complement each other’s growth by
secreting these amino acids into the environment. The strength of the
dependency can be tuned by changing the concentration of amino acids
in the externally supplied growth medium. As the external amino acid
concentration is increased, the dependency weakens, and we expect the
degree of intermixing to decrease. However, in a scenario where one
strain exhibits increasingmotility as amino acid concentration increases,
we find that while intermixing initially decreases, at higher external
amino acid concentrations it increases again (Fig. 4a)107. To understand
this phenomenon, we need to consider how amino acid concentrations
affect each of the species in isolation: pattern formation in the first strain
is not affected by increasing amino acid concentrations (Fig. 4b).
However for the second species, we see increased intermixing (Fig. 4c).
These two observations, coupled with our knowledge of the interaction
between the strains, allows us to understand the spatial pattern that
develops when they are grown together.

These simulations illustrate that it is essential to identify all factors that
change as a result of an experimental manipulation. In our example, the
observed change in spatial patterns could only be explained by also
quantifying how changing the chemical environment affected cell motility
(Fig. 4). Importantly, it is often not clear a priori which factors might be
affected by an experimental manipulation. In the current example, the
unexpected non-monotonic relation between cell mixing and interaction
strength would probably have alerted the experimentalist that there was an
unidentified confounding factor at play (Fig. 4a), leading to additional
control experiments (Fig. 4b, c). However, in many cases the effects of the
confounding factors are likely more subtle and could easily be missed,
leading to potentially erroneous interpretations of the experimental results.
It is therefore essential to always be aware of thepotential presenceof hidden
confounding factors and plan control experiments accordingly.

In the remainder of the article, we will discuss how we can create a
quantitative understanding of these feedback loops between cells and their
environment using experimental and computational approaches.

Experimental setups to study spatial patterns
In the previous sections, we have argued that the environment is an
important determinant of the processes that shape the spatial structure of
microbial communities. As a result, the same cell types growing in different
environments can exhibit distinct spatial patterns. For example, whether
cells can grow in two or three dimensions, the shape of physical boundaries,
or the spatial and temporal dynamics of nutrient supply can all change
emerging patterns qualitatively or quantitatively. In the following, we ana-
lyze some of the most commonly used experimental setups with this per-
spective in mind and discuss how spatial patterns are influenced by the
properties of each setup (Fig. 5, Table 3).

Colonies on agar plates
Colony biofilms are macro-scale (mm to cm) communities that grow on a
nutrient-containing surface (recently reviewed in refs. 108,109). In a typical
experiment, amixture of cell types is placed in the center of an agar plate and
cells grow outwards on the agar–air interface. Expanding colonies experi-
ence no physical boundaries, but rather, after an initial exponential growth

c) Monolayers in Growth Chambers d) Microcolonies on Agar Pads

a) Colonies on Agar Plates b) Biofilms in Flow Cells

Flow
Flow

Flow

Time

Time Time
Flow

Time

Fig. 5 | Overview of experimental setups to study spatial patterns. Experimental
setups differ in multiple ways, including the space accessible for cell growth, the way
that nutrients diffuse, and how interactions play out. For each experimental setup,
the top panel represents a basic overview, while the lower panel displays how che-
micals travel within the system. Gray hexagons represent nutrients in the media,

while pink triangles and green squares represent chemicals released by the cells.
Schematics are shown for: a Colony biofilms on agar plates. b Biofilms in micro-
fluidic flow cells. cMonolayers inmicrofluidic growth chambers.dMicrocolonies on
agar pads.
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phase, expand at a constant velocity110,111. The radial growth rate is deter-
mined by physical forces at the colony edge, while vertical growth is limited
by the depletion of substrates112,113. The actively growing population is thus
restricted to the colony edge, where lineages compete to occupy empty
space. Thus, faster-growing lineages are more likely to form sectors in the
growing colony. However, even if all lineages grow at equal rates, sectors
form due to genetic drift49,111. Interactions between cell types also modulate
the spatial patterns, for example, metabolic dependencies typically lead to
small sectorswithmore intermixing27,28.While colonybiofilms are primarily
used to study isolated biofilms, these assays can also be used to study
interactions between biofilms114.

Colony assays lack single-cell resolution and aremore commonly used
to study population-level behavior. Lineage growth rates can be quantified
by destructively sampling the colonies and comparing initial versus final
lineage frequencies by counting colony-forming units61. However, this
cannot capture the time and spatial dependence of interactions and pools
together the effects of metabolic and physical interactions. Imaging can also
provide information about the interaction between cell types. For example,
the sectors of the fittest strain tend to increase in width throughout
expansion49,111 and the degree of intermixing increases when metabolic
metabolic dependencies are stronger27,28. Many other factors, such as cell
shape39,49, physical interactions115, killing interactions54, or even lag times52

affect the shape of sectors. While it is generally hard to obtain single-cell
growth rates and movement, adaptive microscopy techniques do allow for
the tracking of individual cells at the colony edge116. Moreover, recently,
additional methods have been developed to study the transcriptional and
metabolic activity of cells for distinct spatially resolved subpopulations89.

Biofilms in microfluidic flow cells
Inmicrofluidic devices, cells grow attached to a surface, to each other, or are
physically trapped in growth chambers, while nutrients are provided via the
liquid media in which they are immersed (recently reviewed in ref. 117).
These devices can be designed either as open systems where chemicals flow

into and out of the system continuously, or as closed batch systems where
cells and chemicals are inoculated and the device is sealed.

The simplest microfluidic setups consist of a rectangular flow channel
in which biofilms grow attached to the glass surface. With time-lapse
microscopy the growth and movement of cells can be followed through the
entire biofilm life cycle: from initial surface attachment and microcolony
formation, to the growth and maturation of three-dimensional biofilms, to
the eventual dispersal of the biofilm118. Recent advances in image analysis
techniques allow for the analysis of spatial patterns at single-cell resolution
in biofilms of up to a few thousand cells119,120. Moreover, transcriptomic
profiles can be obtained for distinct subpopulations89,121.

Flow cell biofilms differ from colony biofilms in a few important ways.
First, the chemical environment is qualitatively different. In flow cells, both
substrates and oxygen enter from the biofilm–liquid interface, whereas in
center of colonies they enter from opposite sides (at the colony edge gra-
dients aremore complicated). Second, different physical forces are relevant,
with shear forces dominating in flow cells and friction dominating in colony
biofilms. Finally, whereas colony biofilms are mostly grown in isolation,
flow cells often containmany separate biofilms that are coupled through the
exchange of cells and chemicals. Upstream biofilms can significantly alter
the chemical environment of downstream biofilms84. Through passive and
active motility, cells can migrate between biofilms, thereby allowing for
major changes in spatial arrangement even in mature biofilms122.

Monolayers in microfluidic growth chambers
Microfluidic growth chambers can be used to physically constrain cells to
grow in mono-layers, facilitating quantification of growth rates and gene
expression at the single-cell level123. These devices typically consist of a flow
channel, with small growth chambers branching off to the sides, creating
many independent compartments that are shielded from the fluid
flow90,124,125. The high density of cells and limited flow can createmicro-scale
chemical gradients23,123,126,127 and short-range cell-cell interactions85,86 that
are similar to those in three-dimensional biofilms.

Table 3 | Comparison of common experimental systems

Colonies on agar plates Biofilms in flow cells Monolayers in growth
chambers

Microcolonies on agar pads

Scale

Cell numbera >109 103–106 100–1000 10–500

Length scale 1–10mm 10–500 μm 10–100 μm 5–20 μm

Imaging resolution Population-level Single-cell for small biofilms Single-cell Single-cell

Physical environment

Growth interface Agar-air Liquid-glass Agar-liquid-glass PDMS-liquid-glass

Density High High High Low

Physical constraints None None Restricted in all dimensions Restricted in z-dimension

Dominant forces Crowding, friction, surface
tension

Crowding, shear force Crowding, friction Crowding, friction, surface
tension

Chemical environment

Nutrient supply From agar, finite resources From liquid, replenished From liquid, replenished From agar, finite resources

Dominant gradients From air & agar interface to
biofilm core

From liquid interface to
biofilm core

From opening to death end of
chamber

From edge to center of
microcolony

Steady-state gradients? Quasi-steady stateb Quasi-steady stateb Yes No

Diffusion within community Through crowded biofilm
& agar

Through crowded biofilm Through crowded chamber Through agar

Chemical coupling between
communities?

No Yes, through flow and
diffusion

No Yes, through diffusion

Movement of cells between
communities?

No Yes, through flow and
motility

No Yes, through surface motility

aCell numbers depend on setup, species, and growth media, a typical estimate is shown.
bQuasi-steady state gradients are formed in large colonies and biofilms, where the chemical concentrations as a function of the distance from the edge are approximately constant in time.
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By constraining growth to two dimensions, it is substantially easier to
track the growth and movement of cells in microfluidic growth chambers
than in three-dimensional biofilms. These chambers are therefore well
suited to study in detail how the location of a cell relative to the nutrient
source, or to other cells, affects its growth and activity. However, the geo-
metric constraints of the chambers assert strong physical forces, that can
affect cell physiology and pattern formation71,124,128,129. This can make it
challenging to study cell types that differ strongly in their size or growth
rates. For example, chambers quickly become dominated by the fastest-
growing cell type30. However, this can be avoided using clever designs:
microfluidic chips with an undulating bottom trap cells and can allow for
more stably coexisting lineages within the same chamber129.

Microcolonies on agar pads
In agar pad experiments, very low-density cultures are added to a piece of
agarose gel and covered with a glass coverslip. The initial location of cells is
typically random, however it can be controlled by printing initial patterns45.
These cells then grow intomicrocolonies of up to a fewhundred cells. Like in
microfluidic growth chambers, cells are primarily constrained to grow in a
mono-layer, allowing for single-cell resolution imaging using conventional
microscopes. However, unlike growth chambers, cells are completely free to
move in the other two dimensions. Agar pads can thus be used to study
active movement toward a cue over longer distances, such as toward a
chemical signal secreted by another cell type in a different microcolony62,66.

While microfluidic approaches require specialized equipment and are
challenging to set up, agar pads are relatively simple to use, making them
ideal for high-throughput screening of interactions between species130,131.
However, their chemical and physical environment is qualitatively different
from those in the other setups described so far. Because all cells are directly
connected to the surrounding medium (i.e. the agar pad), gradients in
nutrients and excreted molecules are weaker (Fig. 5). The effect of inter-
actions can thusbequalitativelydifferent fromthose found indense biofilms
or growth chambers132. Moreover, due to the small distances between
microcolonies, cells interact simultaneously within133,134 and between
microcolonies66,130,131,135. This can make it challenging to quantify the
strengthof interspecies interactions.However,with careful data analysis and
control experiments, quantification of interactions is still possible131. Finally,
due the short distances betweenmicrocolonies,motility plays amuch bigger
role than in large colony biofilms66.

Choosing an experimental setup
The setupsdescribed above all have their ownstrengths andweaknesses, and
the choice of which to use depends on the question at hand (Table 3). Care
must be taken to consider all confounding factors that can affect the process
of interest and choose the setup that minimizes these factors. Moreover, the
choicealsodependson thenatural systemof interest. For example, agarpads
can be used to model the competition between neighboring microcolonies
that occurs in environments such as the soil8,136, while flow cells model the
environment experienced by biofilms in aquatic environments137,138.

In addition to the setups described above, many more experimental
models havebeendeveloped tomimic specificnatural systems. For example,
microfluidic devices have been developed to study diffusion-mediated
interactions139, the colonization of structured habitats140,141 and free-floating
marine snow particles142,143, or the dynamics of filamentous biofilms
(streamers)92,93. Other groups have developed systems to study nonsurface
attached biofilms144, recently reviewed in ref. 68. Finally, organ-on-a-
chip145,146 and plant-on-a-chip147 devices could be used to study pattern
formation in the context of host environments.

Building predictive models
Mathematical and computational models can be helpful either to create a
conceptual understanding of pattern formation in general, or to describe or
predict it for a specific experimental system (e.g., a specific microbial
community in a specific experimental setup). In the following, we will
discuss three different predictive modeling frameworks to study spatial

pattern formation that are more or less appropriate depending on the level
of understanding and quantitative characterization of the experimental
system (Fig. 6).

Mechanistic models
The goal of mechanistic models is to explain and predict pattern formation
through biological, chemical, and physical interactions. This requires the
formulation of a mathematical model with explicit metabolic and physical
interactions64,99,148–155. Mechanistic models keep track of the positions and
orientations of individual cells (agent-based models), as well as the con-
centrations of exchangedmetabolites. The concentrations ofmetabolites are
obtained from reaction-diffusion equations describing the uptake and
externalization of metabolites by cells, and diffusion in the medium. Cell
biomass increases through the uptake ofmetabolites. Chemical interactions
are thusmodeledmechanistically by considering explicitly how cells change
their local environment through the uptake and externalization of chemi-
cals, how this in turn affects neighboring environments through diffusion,
and finally how this affects the growth of these neighboring cells. After the
biomass has reached a certain threshold, cells divide and new-born cells are
assigned a new position and orientation. Physical interactions between cells
can be modeled in several ways, for example by preventing two cells to
occupy the same position. Recent work has extended this approach by
implementing agent-based genome-scale models, which include a detailed
description of each individual cell’smetabolic activities88. Depending on the
experimental setup and the question of interest, some simplifications can be
made. For example, if cell shape andmotility canbe ignored, the agent-based
model can be simplified to a cellular automaton53,101,156. To make quantita-
tive predictions for a specific experimental system, uptake and leakage rates
as well as diffusion constants for all exchanged compounds must be mea-
sured. Moreover, all physical and biochemical parameters governing the
growth and movement of cells need to be defined. In practice, this can be
challenging. However, many of these parameters can be estimated from
batch experiments in liquid media or by fitting single-cell measurements
obtained from experiments with one of the setups described above43.

Heuristic models
In heuristicmodels, the variables of interest are not biochemical parameters
but coarse-grained variables that describe the main interaction attributes.
Instead of explicitly modeling how chemical interactions arise from the
exchange of chemicals, the effects of these interactions are summarized by
considering how the growth of a focal cell depends on the composition of its
local neighborhood. Interactions can thus be described by their range (i.e.,
the size of the local neighborhood) and the growth function that maps the
composition of this neighborhood to the focal cell’s growth rate. These
coarse-grained variables can either be directly estimated from experimental
data, or derived from fundamental biochemical parameters using a bio-
physical model. The goal of heuristic models is to explore trends of pattern
formation that can be generalized beyond the mechanistic details of any
specific experimental system, while maintaining a connection to the
underlying mechanisms. Heuristic models can be developed with different
levels of abstraction: for example if cells interact through the exchange of
multiple different chemicals, heuristic models can either include all of these
interactions independently, or combine them into a single effective
interaction157. Likewise, the growthof cells canbe simulatedbykeeping track
of how cells increase in biomass and divide once they reach a certain
threshold, however these details can also be abstracted away by assuming
simple death-birth dynamicswhere randomcells are removed from the grid
and replaced by their fastest growing neighbor. This last approach has been
used successfully to create a graph-based model of pattern formation in a
consortium of Escherichia coli auxotrophs growing in microfluidic growth
chambers, and allowed for the prediction of community composition and
structure from the interaction strength and ranges101.

Heuristic approaches can also be used for colony experiments via
reaction-diffusion equations which consider continuum cell densities111,158.
These models can predict sector properties such as fitness and can thus be
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used to infer interaction parameters (e.g., by fitting the data with a Lotka-
Volterra model159).

Statistical models
Statistical models aim to find correlations between spatial features and
measured parameters, regardless of the mechanistic details. For example,
regressionmodels can be used to identify how adependent variable (e.g., the
degree of mixing between two strains) depends on an experimentally con-
trolled environmental variable (e.g., the nutrient concentration in the
medium) or property of the strains (e.g., their level of motility). Moreover,
machine-learning models can be trained to infer interactions from spatial
patterns160. Statistical models are ideal when interaction mechanisms are
unknown, or when large-scale screens are performed. For example, ref. 49
found that thefinal sectorwidth in a colony depends on the roughness of the
boundaries between sectors.

Choosing a modeling framework
While mechanistic models can make highly accurate predictions, they can
be challenging to parameterize.On theother hand, statisticalmodels require
no parameterization at all, but also do not provide mechanistic insights.
Heuristic models lie at an intermediate level of complexity and share the
positive aspects of both: they help to identify trends with a few intuitively
comprehensible parameters that can either be directly measured or calcu-
lated from the biophysical parameters. For this reason, they might be best
suited for finding general rules for pattern formation in microbial
communities.

Conclusions
The spatial structure of microbial communities shapes their dynamics,
function, and evolution. As such, understanding the drivers of spatial
structure is of great importance. Spatial patterns arise from the growth and

movement of cells, which in turn are determined by the properties of cells
and those of their chemical and physical environment. These properties are
tightly interconnected and are part of intricate feedback loops. It is thus
challenging to isolate the effect of a single factor on spatial features and to
understand how they combine to affect overall patterns.

Although the spatial structure has been intensely studied, there are still
many open questions (Table 4). So far, research has primarily focused on
simplebiological systemsand interactionshavemostlybeen studiedbetween
closely related cell types (e.g., strains of the same species). Moreover, the
effects of varying the physical and chemical properties of the environment
have mostly been studied by varying a single factor at the time in a largely
unsystematic way (i.e., different factors were studied using different systems
complicating direct comparisons of their effects). This has yielded, at best, a
partial understanding of the drivers of pattern formation. We are thus still
unable to identify general principles that apply across biological and
experimental systems. Consequently, predicting pattern formation in syn-
thetic and natural microbial communities remains inaccessible.

To fill this knowledge gap, it will be essential to systematically study
how the properties of cells and their environment, as well as the feedback
between them, affect pattern formation across a wide range of biological
systems and environments. This requires three main lines of research. First,
we must quantify how different factors are connected through feedback
loops and other interdependencies (“What generates spatial patterns?”,
Table 2). This requires carefully designed experiments where factors are
systematically changed, alone and in combination, while using control
experiments to disentangle the effects of possible confounding factors (e.g.,
as illustrated in Fig. 4). Moreover, bio-printing approaches could be used to
experimentally manipulate spatial patterns directly, allowing for easier
quantification of how these patterns affect cell growth and movement45.
Second, we need to create an understanding of how the environment or
experimental setup affects pattern formation (“Experimental setups to study
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Fig. 6 |Overview ofmodeling frameworks to study spatially structuredmicrobial
communities. aMechanistic models describe metabolic and physical interactions
explicitly and thus require information such as the uptake (u) and leakage (l) rates of
chemicals (Rα,Rβ, andRγ), as well as how these chemicals influence the growth (g) of
cells (i and j). Mechanistic information can for example be used to parameterize an
agent-based model where cells in a colony grow in response to chemicals that are
represented by explicit reaction-diffusion equations. b Heuristic models describe
interactions more coarsely, using parameters such as the interaction range (r) and

strength (s), with strength describing the effect of the interaction on growth. These
values can parameterize cellular automata, where cells are placed on a two-
dimensional grid and the dynamics is described by a death-birth update rule.
c Statistical models do not rely on mechanistic parameters, but rather aim to fit a
function that predicts the value of one or more variables based on the value of other
variables. For example, amodel could befit that relates an independent variable such
as external amino acid concentration to a dependent variable, such as intermixing of
strains.

https://doi.org/10.1038/s41522-025-00666-1 Review

npj Biofilms and Microbiomes |           (2025) 11:32 9

www.nature.com/npjbiofilms


spatial patterns”). This requires studying the same biological system across
different experimental setups and environmental settings. Finally, to find
general principles, it is essential to study a wide range of biological systems
across a set of well-defined but diverse environments (e.g., using the four
setups described in “Experimental setups to study spatial patterns”).
Mathematical models could then be used to identify general principles by
describing how different factors interact to affect overall pattern formation
(“Building predictive models”). Such cross-system comparisons could be
facilitated by developing standardized experimental and data reporting
protocols.

By recognizing the fundamental processes that underlie pattern for-
mation, we can design experiments and models to study the intricate rela-
tionships between biological, chemical, and physical factors that affect
spatial patterning. Understanding these relationships can lay the founda-
tions to understand and predict pattern formation in increasingly complex
microbial ecosystems. These insights will ultimately be needed to effectively
engineer microbial communities to improve human and planetary health.

Data availability
No datasets were generated or analysed during the current study.
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