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Biological interactions are pervasive in nature, where organ-
isms across all domains of life are connected through dense 
interaction networks1. These interactions influence what 

individual organisms do—the expression of their phenotypic traits 
and their rates of growth, reproduction and survival. The effects 
of interactions on individual organisms scale up to determine the 
dynamics and functions of ecosystems2. In natural systems, these 
interactions often emerge in spatially structured settings, where 
individuals interact preferentially with other individuals that are 
close in space3. To understand and predict the properties of such 
structured communities, we thus first need to understand the spa-
tial interaction network between individual organisms (that is, 
understand the nature and strength of interactions between indi-
viduals as functions of their spatial positions in a community). We 
then need to understand how these interactions scale up to give rise 
to processes at the community level4.

Our goal here was to analyse how local interactions in spatially 
structured communities determine community functions and 
dynamics. We focused on communities of interacting microorgan-
isms. Microbial communities play important roles in all habitats 
on our planet. For example, microbial communities in the envi-
ronment drive the global cycling of elements5, while the microbial 
community in our gut affects our physiology, cognition and emo-
tions6. These community functions are based on biotic interactions 
between species. Microbial communities typically consist of hun-
dreds to thousands of different microbial species that interact with 
each other in numerous ways7. These interactions are often based 
on the diffusion-mediated exchange of molecules between cells8–10. 
Many microorganisms are unable to synthesize all the cellular build-
ing blocks required to grow and thus take up metabolites released by 
other cells11–13; moreover, microorganisms often consume resources 
partially and exchange metabolic intermediates with other cells14,15. 
Microorganisms also exchange signalling molecules with other cells 
to coordinate their activities16,17.

Most of these microbial interactions arise in spatially structured 
situations. The majority of microorganisms across all habitats grow 
in biofilms, which are genetically diverse surface-associated com-
munities embedded in an extracellular polymeric matrix18. In such 
spatially structured communities, the strength of the interaction 
between two organisms—that is, between two individual microbial 
cells—is expected to decline with increasing distance between them. 
A number of studies have predicted or observed that the strength 
of these interactions decays with the distance between cells14,19–23. 
For example, mathematical models predict that yeast strains can 
exchange cellular building blocks across a range of about 100 µm, 
and experiments revealed that this range influences the spatial self-
organization of simple communities composed of such strains19,24. 
In general, when the spatial range across which cells interact is 
small, the spatial arrangement of different cell types determines 
which cells interact with each other. Therefore, the interaction range 
between cells can strongly influence the collective functions and the 
dynamics of communities8,22,25–27. The interaction range is often an 
arbitrary parameter in theoretical models25,26 or is experimentally 
measured in a heuristic and system-specific way that cannot be eas-
ily generalized20,28. We lack direct measurements of the interaction 
range between individual cells and a mechanistic understanding of 
the factors that determine this spatial scale. Progress in this direc-
tion would allow us to build a general framework to predict which 
ecological interactions emerge in microbial communities and to 
understand how these interactions shape community properties.

Our aim here was to develop such a general framework. More 
specifically, our first main goal was to directly measure the inter-
action range in assembled microbial communities. Our second 
goal was to obtain a mechanistic understanding of the factors that 
determine the interaction range to predict the interaction range 
in other systems. Our third goal was to assess the consequences of 
this interaction range at the level of the community. We combined 
time-resolved, quantitative single-cell measurements in a spatially 
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structured synthetic community with mathematical modelling to 
address these goals.

Results
We focused on a scenario where two bacterial genotypes exchange 
cellular building blocks that are essential for growth, a situation that 
is widespread in natural microbial communities11,29. In such a situa-
tion, one would expect that the interaction range between cells would 
greatly affect the growth of individuals and communities. This can 
be illustrated with a simple simulation of the cellular dynamics in a 
system composed of two interacting partner species (Fig. 1a). The 
simulation rests on three general assumptions: first, each cell can 
receive compounds only from cells belonging to the partner species 
that reside within the interaction range; second, the growth of indi-
vidual cells depends on the fraction of the cells of the partner species 
within the interaction range; third, if a cell divides, it places an off-
spring in a neighbouring site. This simple simulation reveals that the 
average growth rate of individual cells is low when the interaction 
range is small (Fig. 1b). This key finding originates from a simple 
mechanism: most individuals are surrounded by their offspring; 
if they interact on a small spatial scale, they interact mostly with 

these offspring, from which they cannot obtain the cellular building 
blocks they need. This finding is consistent with previous theoreti-
cal studies25,26. The effect becomes stronger when organisms depend 
on compounds from two or more other species: a small interaction 
range reduces the probability that an individual is close enough to 
all of these partners simultaneously (Fig. 1b). The simulation shows 
that short-range interactions can reduce the growth rate of cells 
whenever these cells need to exchange compounds with other geno-
types to grow, in line with previous observations30.

Cells in dense microbial communities interact in a range of a 
few cell lengths. Our first major goal was to quantify the interac-
tion range experimentally. We constructed a microfluidic device 
for growing cells in monolayer communities and developed an 
analytical method to extract time-resolved quantitative single-cell 
data (Fig. 2). We focused on a synthetic consortium composed of 
two auxotrophic Escherichia coli strains. The first strain is unable to 
produce the amino acid proline, and the second strain is unable to 
produce the amino acid tryptophan (Fig. 2a). Because cells naturally 
leak amino acids, the two auxotrophs can grow together by exchang-
ing those two amino acids through diffusion29,31,32. We grew our con-
sortia in the microfluidic device and used automated image analysis 
to identify and track single cells so that we could measure their 
growth rates (Fig. 2b and Supplementary Video 1). The goal of this 
analysis was to determine the spatial range from which a single cell 
could retrieve amino acids (that is, the cell’s interaction range). How 
fast an individual cell grows is expected to depend on the amount of 
the amino acid it receives, and this in turn depends on the number 
of partner cells inside the interaction range. To determine the size of 
the interaction range, we thus looked for the spatial range whose cel-
lular composition best predicted the growth rates of individual cells 
(Fig. 2c and Supplementary Video 2). We measured the fraction fd 
of the partner within a distance d from a cell and determined the 
correlation between this fraction and the cell’s growth rate for a large 
number of individual cells. The interaction range is then defined as 
the value of d at which this correlation is maximal (Fig. 2d).

This analysis revealed that the interaction range is on the order of 
only a few cell lengths (Fig. 2d). This range was found consistently 
across ten biological replicates (~10,500 cells analysed in total). 
Specifically, the interaction range of the tryptophan auxotroph 
cells is 3.2 ± 0.4 μm (mean ± s.e.m.), while the interaction range of 
the proline auxotroph cells is significantly larger at 12.1 ± 0.5 μm 
(P < 10−5, paired t-test, n = 10, Fig. 2e). In other words, these cells 
live in a small world: they interact with only a small group of indi-
viduals around them. Cells can grow well only if their partner is 
among these individuals (Fig. 2f,g). In control experiments where 
amino acids were provided with the growth medium, the growth 
rates of individual cells did not depend on the proximity to the part-
ner (Extended Data Fig. 1).

A mathematical model offers a mechanistic explanation for the 
small interaction range. Our second major goal was to obtain a 
mechanistic understanding of the factors that determine the inter-
action range. Why do cells only interact across such a small spatial 
range? We addressed this question with an individual-based model 
(Fig. 3a), where cells occupy sites on a 40 × 40 grid. At every grid 
site, we described the internal (I) and external (E) concentrations of 
the two exchanged amino acids with a set of differential equations 
(here shown for one amino acid only; see Methods for complete set 
of equations):
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Fig. 1 | Interacting locally lowers reproductive success. a, A grid is 
populated by two types of cells (black and white dots). The two types 
exchange compounds to reproduce, and place offspring on adjacent sites. 
The reproductive success of an individual increases linearly with the 
fraction of the partner cells within its interaction range. In the example 
shown here, the interaction range is one grid unit. b, The reproductive 
success of individuals is lower in consortia with smaller interaction ranges. 
This decrease is already visible in consortia composed of two interacting 
types (as in a). It becomes more pronounced in consortia composed of 
three or four types, where an individual cell can grow only if all the other 
types reside in the individual’s interaction range.
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We assumed that cells take up amino acids actively (with rate ru) and 
leak them passively (with rate rl) in the environment, where these 
molecules diffuse with the effective diffusion constant Deff, which 
accounts for the density of cells; α is the ratio between the volumes of 
the intra- and extracellular environments (see Methods). The growth 
of cells was modelled using the Monod equation, μ = μauxI / (I + K), 
where K is the concentration of the limiting amino acid at which 
the auxotrophic cells grow at half the maximum speed μaux.  
All model parameters were taken from the literature or were directly 
measured, apart from the two leakage rates, which were estimated 
from the data (Supplementary Section 3.4.2).

We first tested whether our model can predict the interaction 
ranges that we measured experimentally. To do this, we applied the 
model to our measured spatial arrangements of the two cell types, 
calculated the concentrations of amino acids in space by solving the 
equations at steady state and subsequently calculated the theoreti-
cal growth rates of individual cells from the local concentrations of 
these amino acids. We then estimated the interaction ranges by cor-
relating the theoretical growth rates of cells with the fraction of their 
partner in their neighbourhood, as we did with the experimentally 
measured growth rates. The interaction ranges we found deviated 
less than 7% from the experimental interaction ranges (Fig. 3b). 
Our model thus predicts the interaction ranges that we measured 
experimentally. Moreover, our model predicts that the growth rate 
of the auxotrophs increases with the fraction of the partner within 

the interaction range, in agreement with the experimental data  
(Fig. 3c). We conclude that our model is consistent with the experi-
mental data: the mechanisms of amino acid exchange we propose 
can explain how cells interact in these communities.

The interaction range is set by few key parameters. Our model 
reveals that the short interaction range that we measured is mainly 
a consequence of high uptake rates of amino acids and dense 
packing of cells. This becomes evident when we look at a second 
length scale that is directly proportional to the interaction range: 
the growth range, the length scale describing the decrease in 
growth away from a straight interface separating the two cell types  
(Fig. 4a). When the two cell types are in such a symmetric con-
figuration, the concentrations of amino acids can be approximated 
analytically, and from this the growth of the two cell types can be 
predicted (see Supplementary Section 3.4.3 for the derivation). 
The growth range of each type in this symmetric configuration is 
proportional to its interaction range in any complex spatial con-
figuration (Fig. 4b). The analytical expression of the growth range 
of each auxotroph is (see Extended Data Fig. 9 for a comparison 
with the numerical solution):
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Fig. 2 | Auxotrophic cells that exchange cellular building blocks interact in a small range. a, Synthetic communities of two auxotrophic strains of E. coli 
that depend on each other and are labelled with constitutively expressed fluorescent proteins (here depicted as yellow and purple). b, False-colour image 
of a microfluidic chamber in which cells grow in a monolayer. The continuous flow of culture media at the top of the chamber removes cells as soon as they 
are pushed out of the chamber. c, Cells are segmented and tracked (left). Cells are colour-coded on the basis of their individual growth rate, with brighter 
colours indicating higher growth rates (right). Cells that are surrounded by the partner grow faster than cells that are surrounded by their own type. Scale 
bar, 5 μm. d, We calculated the correlation coefficients (Spearman’s ρ) between the growth rates of individual cells and the fraction of the partner in a given 
neighbourhood size. When we plotted the correlation coefficient as a function of the neighbourhood size, we observed that the strength of the correlation 
is maximal for an intermediate neighbourhood size (marked by dashed lines); we call this neighbourhood size the interaction range. e, The two auxotrophs 
have different interaction ranges (10 biological replicates, ~10,500 cells in total). f,g, Both auxotrophs grow faster with an increasing fraction of the partner 
within the interaction range. Tryptophan auxotrophs (ΔT, f) generally have lower growth rates than proline auxotrophs (ΔP, g), as shown by the slopes 
of the linear regressions (0.75 for ΔP and 0.21 for ΔT). Black dots represent single cells (1,985 ΔP and 1,769 ΔT cells), and open symbols are the binned 
median values; lines indicate linear regressions on the binned values.
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where we set γ ¼ μaux

Ic

I
, where Ic is the constant internal concentration 

of the amino acid in producing cells and μaux is the maximal growth 
rate of each auxotroph (equal to the growth rate of the wild type in 
our case; see Extended Data Fig. 7). The terms Deff (ref. 33) and α 
depend on the density of cells c, and their ratio is given by:

Deff

α
¼ 2ð1� cÞ2

cð2þ cÞ D

From the mathematical expression, we see that the growth range 
(and thus the interaction range) depends on the uptake, leak-
age and diffusion of the amino acids and on the density of cells. 
Specifically, the growth range (and the interaction range) is 
small in consortia where the leakage rate is low, the uptake rate 
of the exchanged compounds is high compared with their diffu-
sion constant (Fig. 4c) and the density of cells is high. High cell 
densities reduce the interaction range by reducing effective dif-
fusion (Extended Data Fig. 10). This means that denser cellular 
aggregates tend to have cell–cell interactions that are more local-
ized, and cellular density is therefore an important parameter that 

modulates interactions in these aggregates34–36. While cell density 
alters the interaction range of different types in a consortium in 
the same way, the other parameters modulate the interaction range 
of each cell type separately. The difference in interaction ranges 
between cell types depends on the difference in uptake rates, leak-
age rates and diffusion constants of the amino acids they exchange. 
Diffusion constants typically vary over only a small range between 
different amino acids and thus cannot explain large differences in 
the interaction ranges. However, uptake and leakage rates can vary 
substantially between amino acids (for example, the ratio between 
the diffusion constants of tryptophan and proline DT

DP

I
 is 0.75, while 

the ratio between the rates at which the two amino acids are taken 
up, r

u
T
ruP
I

, is 12). From the analytical expression of the growth range, 
we can show that the growth range (and the interaction range) 
depends more strongly on the uptake rate than on the leakage 
rate (Fig. 4c and Extended Data Fig. 8). While leakage rates have 
a minor effect on the growth range (how far a cell can grow away 
from the partner), they have a major effect on the growth rates of 
cells (how fast cells grow). More precisely, we can show that leak-
age rates set the maximum growth rate μmax that an auxotroph can 
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Fig. 3 | Mathematical model reveals the mechanism of local interactions. a, Individual-based model where amino acids are passively leaked, diffuse 
in the environment and are actively taken up. At every grid site, we describe the internal concentration of amino acids I and the external E with a set of 
differential equations. We assume that the growth rates of auxotrophic cells are limited by the amino acid that they need, and that cells take up amino 
acids actively and leak them passively into the environment, where they diffuse. Deff is lower when the density of cells c is higher. b, The correlation analysis 
based on the model (dark curves) matches the results obtained from experimental data (light curves, identical to Fig. 2d). The predicted interaction range 
for ΔP is 12.8 μm (compared to 12.5 μm in the experimental measurements, P = 0.25, t-test) and for ΔT is 3.0 μm (compared to 3.2 μm in the experimental 
measurements, P = 0.51, t-test). c, The predicted and experimentally measured growth rates are strongly correlated (r2 = 0.95 for ΔP and r2 = 0.99 for 
ΔT, Pearson correlation). We grouped cells on the basis of the fraction of the complementary partner in their interaction range, and for each group we 
compared the measured growth rate (same data as Fig. 2f,g) to the predicted growth rates. Each symbol represents a single group.
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reach when fully surrounded by the partner (see Supplementary 
Section 3.4.1 for the derivation):
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The growth range and μmax vary independently, being primarily 
modulated by the uptake rates and the leakage rates, respectively. 
Our findings apply generally to any dense microbial assembly in 
which molecules are exchanged by leakage, diffusion and uptake. 
For example, the same model could estimate the length scale of cell–
cell communication via molecules that are taken up or degraded by 
the recipient, such as quorum-sensing molecules.

Interaction range and patch size are two different length scales. 
According to our mechanistic model, the interaction range represents 
the size of the neighbourhood from which cells can retrieve the amino 
acids produced by the partner. It might seem intuitive to measure this 
neighbourhood using a simpler quantification such as the patch size 
of the different genotypes37. We tested the validity of this method and 
found that interaction range and patch size are potentially two differ-
ent length scales: we verified that the interaction range of two auxo-
trophs varies less than 50% for the range of patch sizes observed in 
our chambers (a small change compared with the fourfold difference 
in interaction range between the auxotrophs, Extended Data Fig. 3). 
The reason is that the interaction range is set by the cell density and 
a few biochemical parameters (uptake relative to diffusion), while 
patch size depends mostly on the physics of cell division and move-
ment. In general, we see no significant correlation between size of 
patches and average growth in these patches (Extended Data Fig. 4).

A small interaction range affects growth and dynamics of the 
whole community. How do short-range interactions between indi-
vidual cells affect community-level dynamics? Our communities 
show consistent dynamics in time: within about 25 h, all 61 replicate 
communities reached a steady-state composition, and in all but two 
of the communities the tryptophan auxotroph was in the minor-
ity (median fraction of total biomass = 0.23, Fig. 5a). This shift 
in the composition of the community arises from the individual-
level properties that we measured. The proline auxotroph tends to 

increase in frequency because of a double advantage: it has a higher 
μmax and a larger interaction range than the tryptophan auxotroph; 
as a consequence, the growth rate of the proline auxotroph is less 
sensitive to the spatial arrangement. The differences in interaction 
range and μmax drive the community to its equilibrium composition 
where the tryptophan auxotroph is in minority.

A final and important question is whether the small interaction 
range between cells limits the growth of the community as a whole. 
This question brings us back to our central hypothesis: that a small 
interaction range limits the exchange of resources and hinders col-
lective metabolism because many cells reside in groups of their own 
type. We therefore tested whether communities with higher levels 
of mixing of the two cell types grew faster. The average growth rate 
of cells in a community is determined by several factors, including 
the proportions of the two types and their level of mixing. We mea-
sured the growth of the 61 communities after 16 h using an image 
analysis method based on optical flow, which provides an estimate 
of the average growth rate of cells in each chamber. We found that 
communities grew faster when they had a higher level of mixing of 
the two types (Fig. 5b,c).

We further tested the effect of mixing on the average growth of our 
communities using our model. Specifically, we tested the prediction 
of our simple cellular automaton, that cells in our communities would 
grow faster if the interaction range was larger or if the spatial arrange-
ment was more mixed. We tested these predictions by applying our 
model to experimentally observed and computationally altered 
spatial arrangements. We randomized the observed spatial arrange-
ments to disrupt kin clusters, and we found that the average predicted 
growth rate of individuals increases (Fig. 5d). Likewise, if we simulate 
a closed system (corresponding, for example, to a large biofilm) where 
no amino acids are lost from the community, we find that lowering 
the uptake rates of amino acids and thereby increasing the interac-
tion range leads to an increase of the average predicted growth rate of 
individuals (Fig. 5e). However, there is a trade-off: in systems that are 
open and where metabolites can diffuse away from the cells (like our 
chambers), very low uptake rates can also reduce the average growth 
rate because of diffusional loss (Extended Data Fig. 5).

Discussion
Here we developed a method to directly measure the interaction 
range that can be applied to a large number of microbial systems. 
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We focused on a synthetic community of two genotypes exchang-
ing amino acids, and we found that the cells in our community 
interacted on a short range and that this lowered their growth rates.  

In general, we expect the interaction range to fundamentally affect 
the functioning of any assembly of interacting microorganisms. 
The specific effects will depend on the nature of the interactions. 
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predicted average growth rates of individuals (number of randomizations = 20, P < 10−5, paired t-test, n = 22). This indicates that the unmixing of the two 
types (which is removed by randomizing the arrangements) decreases average growth rates. e, The model predicts an increase in the average growth rate 
(relative growth above 1), when the growth range (and thus interaction range; see Fig. 4b) increases. Here we simulated a closed system, where amino 
acids are not lost from the system through diffusion; the growth range was varied by changing the uptake rate of amino acids in the model.
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For example, short-range interactions can stabilize the cooperative 
production of molecules, as they ensure that these molecules are 
accessible only to cells that also contribute to production, and are 
inaccessible to non-producing individuals22,38. In contrast, short-
range interactions generally can impede mutualistic cross-feeding19, 
although they can have a stabilizing effect by preventing ecological 
invasion by non-contributing mutants24.

The ecological and evolutionary outcome of cooperation and 
competition can change dramatically when interactions are limited 
to a small neighbourhood8,30,39; therefore, the interaction range is a 
crucial feature of any spatially structured ecological system. Here we 
found that the interaction range between individuals is on the order 
of a few cell lengths in a microbial assembly where the production 
of cellular building blocks is distributed across different cell types. 
We predict that the interaction range is generally small whenever 
the density of cells is high and the uptake of the molecules medi-
ating the interaction is fast compared to their diffusion. We thus 
expect the interaction range to be small in dense assemblies where 
cells exchange cellular building blocks, signalling molecules that are 
degraded on reception, or metabolites that bind40 or digest extracel-
lular nutrients41,42. Finally, we showed that, if interaction ranges are 
small, the spatial unmixing of cell types through local growth can 
hinder metabolic exchange between different cell types and reduce 
community growth.

Our work suggests that knowing at which spatial scale organ-
isms interact is crucial for understanding the ecological dynamics 
and functions of communities. Here, we worked with microbial 
systems, where interspecies interactions are often based on the 
uptake and release of diffusible metabolites. In plant communities, 
the ecological dynamics are shaped mostly by competition for light 
and nutrients43 as well as by facilitation44. In communities of preda-
tors and prey, interactions are based on encounter rates and thus by 
the movements of individuals45. In all these cases, the interaction 
strength is expected to decline with distance between individuals. 
Understanding how local interactions scale up to determine the 
dynamics and functions of such spatially structured communities 
is thus a central goal.

Methods
Strains. All experiments were performed using strains derived from E. coli 
MG1655; these strains are ΔtrpC-GFP (MG1655 trpC::frt, PR-sfGFP), ΔtrpC-RFP 
(MG1655 trpC::frt, PR-mCherry), ΔproC-GFP (MG1655 proC::frt, PR-sfGFP) and 
ΔproC-RFP (MG1655 proC::frt, PR-mCherry). The ΔproC strains are unable to 
produce proline due to a deletion in proC, and the ΔtrpC are unable to produce 
tryptophan due to a deletion in trpC32. The auxotrophic strains were made by 
transferring the respective kanamycin cassettes from the Keio collection46 into 
TB204 and TB20547 using lambda Red-mediated recombination48. TB204 and 
TB205 are E. coli MG1655 derivatives that constitutively express sfGFP or mCherry 
from the lambda promoter from the chromosome. In brief, the kanamycin cassette 
including the homologous flanking regions were amplified by PCR from JW0377 
(proC::kan) and JW1254 (trpC::kan)46 and transformed into TB204 and TB205 
harbouring the pSim8 plasmid (provided by D. L. Court). The primer sequences 
used were:

U_proC_fw: CATAAAGTCATCCTTTGTTGGG
D_proC_rv: CTTTACGGATTAGTGTGGGG
U_trpC_fw: AACGTCGCCATGTTAATGCG
D_trpC_rv: GAACTGAGCCTGAAATTCAGG
The kanamycin cassette was transferred into a fresh strain of TB204 or 

TB205 using P1-mediated generalized transduction. On successful transduction, 
the phenotypes of the strains were confirmed (no growth without proline or 
tryptophan), and the kanamycin cassettes were removed from the genome using 
the FLP recombinase from plasmid pCP2048. We confirmed the ability of our two 
auxotrophs to grow together by receiving the amino acid they cannot produce from 
their partner, as reported in previous work32.

Media and growth conditions. Monocultures of the two auxotroph strains 
were started from a single colony taken from a lysogeny broth–agar plate and 
were grown overnight at 37 °C in a shaker incubator in M9 medium (47.76 mM 
Na2HPO4, 22.04 mM KH2PO4, 8.56 mM NaCl and 18.69 mM NH4Cl) supplemented 
with 1 mM MgSO4, 0.1 mM CaCl2, 0.2% glucose (all from Sigma-Aldrich), 50 μg l−1 
of L-proline (434 mM) and 20 μg l−1 of L-tryptophan (98 mM) and 0.1% Tween-20 

(added to facilitate the loading of cells in the microfluidic device). The cells were 
loaded in the stationary phase in a microfluidic device and grown in the same 
media. After approximately 10 h, the cells exited the lag phase and started to grow 
and fill the chambers. The medium was then switched to M9 medium + 0.2% 
glucose + 0.1% Tween-20 with no amino acids. This medium was fed for the 
whole duration of experiment (approximately 3 d). Imaging was started 3 h before 
switching to this medium, to have a control for cellular growth with amino acids in 
the medium (the results are shown in Extended Data Fig. 1).

Microfluidic experiment. The microfluidic devices consisted of chambers of 
60 × 60 × 0.76 μm3 facing a feeding channel 22 μm high and 100 μm wide. The 
masks for photolithography were ordered from Compugraphics. The master 
mould was made on a silicon wafer, by applying SU8 photoresist in two steps (the 
first step to make the layer for the growth chambers and the second step to make 
the layer for the feeding channel). To make the chips used for the experiments, 
Polydimethylsiloxane (PDMS, Sylgard 184 Silicone Elastomer Kit, Dow Corning) 
was mixed in a ratio of 1.5:10 and poured on the dust-free master mould, degassed 
in a desiccator for 30 min and baked for around 1 h at 80 °C for curing. PDMS chips 
of approximately 2 cm × 3.5 cm were cut out around the structures on the wafer. 
Holes for medium supply and outlet were punched (diameter = 0.5 mm). PDMS 
chips were bound to round (50-mm diameter) glass coverslips (Menzel-Gläser) 
by treating them for 30 s at maximum power in a Plasma Cleaner (PDC-32G-2, 
Harrik Plasma), and left on a hated plate at 100 °C for 1 min for binding. Before 
an experiment, a small amount of medium was flushed into the channels using 
a pipette to wet the chambers. Air was then pushed through the main channel 
(the medium remained in the chambers). Cells in the stationary phase from an 
overnight culture (approximately 14 h) were concentrated approximately 100 
times by centrifugation (5,000g, 5 min) and loaded into the chip using a pipette. 
The cells were pushed into the side chambers with the help of small air bubbles 
flowing through the main channel. Once a sufficient number of cells were pushed 
inside the chambers, fresh medium was pumped through the flow channel. For 
all experiments, syringe pumps (NE-300, NewEra Pump Systems) with 50-ml 
syringes containing the medium were used. Tubing (Microbore Tygon S54HL, 
inner diameter 0.76 mm, outer diameter 2.29 mm, Fisher Scientific) was connected 
to the syringes using 20G needles (0.9 mm × 70 mm), which were directly inserted 
into the tubing. Smaller tubing (Teflon, inner diameter 0.3 mm, outer diameter 
0.76 mm, Fisher Scientific) was then inserted into the bigger tubing and directly 
connected to the inlet holes in the PDMS chip. Medium switches were performed 
by disconnecting the bigger tubing from the syringe and reconnecting it to new 
syringes. All experiments were run at a flow rate of 0.5 ml h−1. The flow rate was 
high enough that amino acids did not accumulate in the feeding channel and were 
not exchanged via the main channel. No growth was observed in the chambers 
hosting only one of the two auxotrophs during the whole experiment.

Microscopy. Time-lapse microscopy was done using fully automated Olympus 
IX81 inverted microscopes (Olympus). Images were taken using a ×100 NA1.3 
oil objective (Olympus) with ×1.6 manual auxiliary magnification and an ORCA-
flash 4.0 v2 sCMOS camera (Hamamatsu). Fluorescent imaging was done using a 
X-Cite120 120 Watt high-pressure metal halide arc lamp (Lumen Dynamics) and 
Chroma 49000 series fluorescent filter sets (N49002 for GFP and N49008 for RFP, 
Chroma). Focus was maintained using the Olympus Z-drift compensation system, 
and the entire set-up was controlled with Olympus CellSens software (v.1.16)49. 
The sample was maintained at 37 °C with a microscope incubator (Life Imaging 
Services). Several positions were imaged on the same microfluidic device, and 
images were taken every 10 min.

Image analysis. All image processing was done using Matlab (v.2016A and newer, 
MathWorks) and Vanellus software50. Time-lapse frames were first registered 
and cells were then segmented using customized segmentation algorithms. Two 
different algorithms for segmentation were used: the segmentation of biomass 
algorithm and the segmentation of cells algorithm. The segmentation of biomass 
algorithm identifies the green and red biomass in the chamber: images were first 
cropped along the profile of the microfluidic chambers (up to 8 μm from the 
outlet), and biomass was then segmented on the phase contrast image and assigned 
to its relative colour after deconvolution; the algorithm was optimized to give 
the most accurate estimation of the area occupied by cells of each type and not 
to segment the single individuals. The segmentation of cells algorithm identifies 
individual cells for subsequent single-cell growth estimation (elongation rate). In 
this case, cells were segmented on the green or the red fluorescent image, according 
to their fluorescence colour. Single-cell location was tracked using an optical flow-
based algorithm (described below), and the tracking was manually corrected to 
prevent mistakes. Subparts of the chambers were randomly selected for the single-
cell segmentation and tracking. The area close (within 8 μm) to the open end of the 
chamber was not considered for analysis, as amino acid concentrations in this area 
were lower because they were washed out into the main flow channel. The tracking 
algorithm based on optical flow can be described in three steps: (1) estimate the vector 
field of movement M between subsequent segmented images S1 and S2 using the 
Farneback51 algorithm; (2) back-transform the second image, S2,backtransformed = - M × S2,  
to obtain a prediction of how S1 should look on the basis of the vector field of 
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motion; and (3) for each cell in S1, determine the area of overlap with cells in 
S2,backtransformed; cells in S1 are tracked to cells in S2 on the basis of the maximum 
overlap area.

Cell elongation rate. Cell elongation rates (that is, growth rates) were calculated 
by fitting the exponential curve L(t) = L(0) 2μ∙t to the cell length L over time. The 
fitting was done using a linear fit on the logarithm of the cell length over a sliding 
time window of five time points (40 min). The length of a cell was measured as the 
length of the major axis of the ellipse that approximates the cell (that is, the ellipse 
that has the same normalized second central moments as the cell).

Correlation analysis. We quantified the composition of the neighbourhood of a 
focal cell as the fraction of the partner present in that neighbourhood. For example, 
in the case of the tryptophan auxotroph, we quantified the fraction ΔproC/
(ΔproC+ΔtrpC) (ΔtrpC and ΔproC are the areas (in pixels) occupied by each 
auxotroph; therefore, they are measurements of biomass and not of cell number). 
To calculate the fraction above, we first identified biomasses of the two types as 
described in the Image analysis section; we then calculated the area in pixels that 
each cell type occupied within increasing distances from the focal cell’s perimeter. 
For a given distance, we plotted the fraction (x axis) against the growth rate  
(y axis) for all cells, and we calculated Spearman’s rank correlation coefficient (no 
assumption on the functional relationship between variables). The correlation 
coefficient is maximal at a specific distance, which we call the interaction range. 
We used linear regression to characterize the relationship between the growth rate 
of the cells and the fraction of the amino acid producing partner present within the 
estimated interaction range. For Fig. 2d, the correlation is calculated as Spearman’s 
ρ on 1,985 data points for proline auxotrophs and 1,769 for tryptophan auxotrophs, 
both from four biological replicates (with 22 chambers in total). The same analysis 
performed when cells were fed amino acids shows that growth does not depend on 
the neighbours when amino acids are present in the medium (the results are shown 
in Extended Data Fig. 1).

Individual-based model. We considered two cell types living on a 40 × 40 grid:  
the first type can only produce amino acid 1, and is limited in growth by the  
supply of amino acid 2; the second type can only produce amino acid 2, and 
is limited in growth by the supply of amino acid 1. We tracked the spatial 
distributions of I and E as functions of the location in the monolayer (x, y) 
and time (t). We expected these concentrations to be constant in the direction 
perpendicular to the monolayer of cells (z direction); thus, we integrated over the 
z direction. For brevity, we omitted the variables (x, y, t) in the notation. We made 
the following assumptions:

	(1)	 Cells maintain a constant internal concentration of the amino acid they  
can produce.

	(2)	 The growth of a cell is limited only by the amino acid the cell cannot produce; 
the growth is modelled using the Monod equation μ = μwtI / (I + K), where μwt 
is the growth of the wild type.

	(3)	 Both cell types can grow at the same rate μwt when I >> K. This was experi-
mentally assessed (see Extended Data Fig. 7).

	(4)	 Cells take up amino acids actively31, and the process is approximated with 
linear kinetics: uptake = ruE. Linear kinetics approximates Monod kinetics if 
the values of E are low, as is the case in our experimental system.

	(5)	 Cells leak amino acids through passive diffusion through the cellular mem-
brane31, leakage = rl (I − E).

	(6)	 Diffusion in the extracellular environment is modelled as diffusion in  
a crowded environment33, Deff = D(1 − c) / (1 + c/ 2), where D is the  
diffusion constant.

	(7)	 The ratio between the volume inside a cell and the available volume outside a 
cell is constant and equal to α = c / (1 − c).

With these assumptions, we can write the following equations for I for a cell of 
the first type, which produces amino acid 1 and not amino acid 2:

∂I1
∂t

¼ 0

∂I2
∂t

¼ ru2E2 � rl2 I2 � E2ð Þ � I2μ
wtI2=ðI2 þ K2Þ

and for the second type, which produces amino acid 2 and not 1:

∂I2
∂t

¼ 0

∂I1
∂t

¼ ru1E1 � rl1 I1 � E1ð Þ � I1μ
wtI1=ðI1 þ K1Þ

The value of E for each amino acid is:

∂Ei
∂t

¼ �αrui Ei þ αrli Ii � Eið Þ þ Deff
i ∇2Ei

All parameters are taken from the literature or are measured, with 
the exception of the leakage rates, which are estimated from the data (see 
Supplementary Table 1). These equations can be used to predict cells’ growth rates 
in real or artificial arrangements of the two cell types. See Supplementary Section 3  
for a discussion about the effects of these parameters on the length scale of 
interactions, and for more details on the model.

Cellular automaton. The cellular automaton models a consortium of two or 
more types of organisms that live on a grid and benefit from the presence of the 
other types. The model relies on two general assumptions: first, individuals place 
offspring close to themselves; second, the reproductive success of individuals 
depends on the fraction of neighbours of the other type within the interaction 
range, the sole parameter in the model.

An operative description of the cellular automaton follows. Individuals reside 
in a spatially structured setting, each occupying a site on a 40 × 40 grid; each 
site has eight adjacent sites on the grid (Moore neighbourhood), and boundary 
conditions wrap the grid into a torus. For the communities consisting of two types, 
there are individuals of types 0 and 1. At every time step, an individual dies at a 
random location on the grid and it is replaced with an individual of type 0 or 1.  
It will be of type 0 with probability P(0):

Pð0Þ ¼
Padjacent individuals

i δi Reproductive successiPadjacent individuals
i Reproductive successi

where δi is the Dirac delta function, which is one if grid site i contains type 0 and 
zero otherwise. The reproductive success of each individual i is:

Reproductive successi ¼
number of neighbours of the other type

number of neighbours

Individuals interact with all other individuals within a neighbourhood of range 
R (a square-shaped neighbourhood). For communities with more than two types, 
the reproductive success is equal to the fraction of neighbours that are the most 
rare in the neighbourhood:

Reproductive successi ¼
number of neighbours of the rarest type

number of neighbours

All the rest is easily extended from the two types community described above 
to communities of more than two types. To compare consortia with a different 
number of types, the reproductive success is normalized by the reproductive 
success the consortium has in well-mixed conditions (R → ∞), which is 1/2 for two 
types, 1/3 for three and 1/4 for four.

Starting from different initial configurations and varying proportions of the 
types, we let the system evolve and stopped the simulation after the system attained 
a dynamical equilibrium where the average reproductive success of individuals 
remained approximately constant. The average steady-state reproductive success 
resulted from 100 independent runs of the cellular automaton. The cellular 
automaton was implemented in C++ (v.C++14).

Dataset and statistical analysis. The dataset consists of 10,472 cells, from 61 
chambers, grouped into ten biological replicates including both fluorescent 
label combinations. Four biological replicates were done with ΔtrpC-GFP and 
ΔproC-RFP (consortium 1), and six were done with ΔtrpC-RFP and ΔproC-
GFP (consortium 2). Each biological replicate corresponds to one channel in a 
microfluidic chip, and for each channel on average six chambers were analysed 
(range: 3–9). Inside each chamber, on average 172 cells were tracked in time, 
as described in the Image analysis section. The experiments were performed in 
three independent runs using different microfluidic chips and different batches of 
media (the first chip with four replicates of consortium 1, the second chip with two 
replicates of consortium 2 and the third chip with four replicates of consortium 2). 
The interaction ranges and relationships between growth and neighbourhood were 
estimated separately for consortia 1 and 2. The interaction ranges are consistent for 
the two consortia (Fig. 2d shows consortium 1, and Extended Data Fig. 6a shows 
consortium 2), but the fluorescent label affected the growth rate to some extent: 
the ΔtrpC-RFP grows generally slower than the ΔtrpC-GFP (Fig. 2f,g shows 
consortium 1, and Extended Data Fig. 6b,c shows consortium 2). To assess the 
variability of the estimate of the interaction range, we repeated the analysis for each 
replicate in isolation (the results are shown in Fig. 2e).

Mixing and average growth rate in the chambers. The level of mixing of the two 
cell types in each chamber was measured as the ratio between the length of the 
boundaries between the two types and the total area they occupied together:

mixing ¼ boundaries between types
total area occupied

A higher boundaries-to-area ratio indicates higher levels of mixing. The 
boundaries between types were estimated using a computationally efficient proxy: 
we scanned the images in one direction and counted the number of transitions 
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between one type and the other; the total number of transitions is a measure of 
the length of the interface between the two types. In Fig. 5b,c, we normalized the 
measurement of mixing for our 61 chambers to values between zero (the chamber 
with the lowest mixing) and one (the chamber with the highest mixing).

The average growth rate in the chambers was estimated using a method based 
on optical flow (using the Farneback algorithm51). First, a rectangular region 
was drawn that had the same width as the chamber and two-thirds of its depth 
(excluding the third of the chamber close to the opening, where the movement of 
cells is too fast to have a reliable optical flow estimate). As cells grow and flow out 
of the chamber, they move out of the selected region. Let B(t) be the biomass in the 
selected region at t; during a period Δt, B(t) varies due to growth μ(t) and to flow 
outside of the selected region Φ(t). We can thus write the following equation:

ΔB tð Þ
Δt

¼ μ tð Þ ´ B tð Þ � Φ tð Þ

This equation can be used to calculate the growth rate as:

μ tð Þ ¼ 1
B tð Þ

ΔBðtÞ
Δt

þ Φ tð Þ
� �

We estimated Φ(t) from the two separate fluorescent channels; that is, we estimated 
Φ(t) as the sum of the optical flow measured on the red and on the green channels 
separately. All quantities were calculated over a Δt = 2 h around t = 16 h after the 
amino acids were removed, and the optical flow was averaged over a strip (20 pixels 
wide) around the border of the selected region.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The source data for all figures are available in the Supplementary Figure Source 
Data file. A data file containing the full properties of all analysed cells is available in 
the ETH Research Collection: https://doi.org/10.3929/ethz-b-000367403. The raw 
image data are available on request from the corresponding author.

Code availability
The code for the individual-based model is available on the Zenodo repository: 
https://doi.org/10.5281/zenodo.3466038. Additional Matlab scripts for statistical 
analysis are available on request.
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Extended Data Fig. 1 | Growth does not depend on the identity of neighbours when amino acids are fed. When media is supplemented with proline and 
tryptophan, the growth of the auxotrophic cells does not depend on the presence of the partner near by. The correlation between growth rate of cells and 
fraction of the partner is low for all neighbourhood sizes analysed. Panel a shows results for consortium 1 (ΔtrpC-GFP and ΔproC-RFP, 445 and 591 cells 
analysed respectively), panel b for consortium 2 (ΔtrpC-RFP and ΔproC-GFP, 1,905 and 2,067 cells analysed respectively).
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Extended Data Fig. 2 | Growth of cells does not depend on their distance from the chamber’s opening. The growth of both auxotrophic cells correlates 
weakly with the distance from the chamber’s opening into the feeding channel (“depth” in the figure): ρ=0.07, p<10−4, n= 4,567 for ΔtrpC and ρ=0.05, 
p<10−4, n= 5,905 for ΔproC, Spearman.
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Extended Data Fig. 3 | Robustness of interaction range estimate to spatial arrangement of types. Examples of artificial arrangements with controlled 
patch size; dataset of 100 different arrangements per patch size were generated and analysed. The shape of the correlation curve changes for both proline 
(b) and tryptophan (c) auxotrophs, but the interaction range changes only minimally (d) for a range of patch sizes that can be observed in the data.
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Extended Data Fig. 4 | Size of a patch does not correlate with its growth rate. The two different cell types in our system form patches because two 
daughter cells tend to remain close in space after division. Contrary to intuition, larger patches do not imply higher growth rate of the patch (analysis done 
on the tryptophan auxotrophs), because cells in the interior of a large patch tend to grow slower or not at all, as they cannot retrieve the amino acids they 
need. ρ=0.32, p=0.025, n=50, Spearman correlation.
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Extended Data Fig. 5 | Very low uptake rates reduce growth of cells if amino acids can diffuse out of the system. Using our model, we estimated how 
fast cells would grow if their growth range (and interaction range) would increase by lowering uptake rates of amino acids. When simulating systems open 
on one side, like our chambers, the auxotrophs grow slower (relative growth rate is below one) when they have a very large growth range (and interaction 
range), that is when they have very low uptake rates of the amino acids. Yellow indicates tryptophan auxotroph, purple indicates proline auxotroph. 
Relative growth rates are the average growth rates cells would have in our real spatial configurations when we vary the uptake rates of amino acids, divided 
by the growth rates cells have with the actual uptake rates of amino acids (uptake rates values are taken from literature, see Supplementary Table 1).  
Figure shows results for consortium 1 (total of 22 chambers).
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Extended Data Fig. 6 | Individuals interact at a small spatial range. All three panels shows data for consortium 2 (ΔtrpC-RFP and ΔproC-GFP), and 
complement Fig. 2 showing data from consortium 1 (ΔtrpC-GFP and ΔproC-RFP). a, The cells’ growth rate correlates maximally with the identity of their 
neighbours within the interaction range. b, c, Both auxotrophic cells grow faster when surrounded by more complementary partners inside the interaction 
range. Tryptophan auxotrophs (b) achieve generally smaller growth rates then proline auxotrophs (c), as shown by the slopes of the linear regression 
(0.79 for ΔproC and 0.089 for ΔtrpC). Black dots: single cells (3,920 for ΔproC and 2,798 for ΔtrpC); open symbols: binned median values; lines: linear 
regression on binned values.
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Extended Data Fig. 7 | Growth rate in batch cultures of wild type and auxotroph strains. Wild type cells grow at a similar rate in M9 glucose medium 
without amino acids (WT) and in M9 glucose medium supplemented with 50 μg/mL of proline (WT+P), 20 μg/mL of tryptophan (WT+T), or both 
(WT+PT). The auxotrophic mutants in consortium 1 (ΔtrpC-GFP + ΔproC-RFP) grow at the same rate as the wild type. The proline auxotroph was grown 
in medium supplemented with 50 μg/mL of proline and the tryptophan auxotroph in medium supplemented with 20 μg/mL of tryptophan. Markers show 
maximal growth rates in batch culture of individual replicates (n=12), bars show average values. Shared letters (top of panel) indicate no significant 
difference in growth rate (ANOVA analysis with post-hoc Tukey-Kramer pairwise comparison, F=3.29, df=7, p=4*10−3. The wild type strains (WT) are the 
strains expressing the red and green fluorescent proteins (TB205 expressing RFP and TB204 expressing GFP, see details about the strains construction in 
Methods). The growth measurements of these strains was pooled together because they had no significant growth difference (ANOVA analysis on growth 
rate data of wild type in all four growth media, testing for the effect of medium F=2.53, df=3, p=0.07 and color label F=0.02, df=1, p=0.88.
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Extended Data Fig. 8 | The interaction range varies minimally with the leakage rate. a, b, The predicted interaction range is consistent with the 
experimentally measured one across a large range of possible leakage rates. The interaction range of the two auxotrophs was predicted using the model 
while varying the leakage rates of the amino acids. The model was solved on experimentally measured spatial arrangements. The dashed horizontal lines 
and shaded regions indicate the mean and 95% confidence interval of the experimentally measured interaction ranges. The dashed vertical line indicates 
the fitted leakage rate used in all simulations. c, The predicted relative interaction range is consistent with the experimentally measured one over a large 
range of possible leakage rates. The relative interaction range (interaction range of ΔP divided by that of ΔT) was predicted using the model while 

varying the leakage rates of the amino acids. The x axis shows the geometric mean value of the leakage rate rl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rlΔP*r

l
ΔT

q

I
, the different colored lines 

show different ratios of the leakage rates of the two amino acids r
l
ΔP
rlΔT
I

. The dashed horizontal line and shaded region indicate the mean and 95% confidence 

interval of the experimentally measured relative interaction range. The dashed vertical line indicates the fitted leakage rate used in all simulations (fitted 
rlΔP
rlΔT

¼ 26

I

). d, Cross-validation of model. The leakage rate was fitted to data from consortium 1 and the interaction range was calculated using the model. 

This prediction (based solely on data from consortium 1) was compared to the experimentally measured interaction range in consortium 2. The model can 
quantitatively predict the interaction range (p=0.16, n=6 for ΔT and p=0.35, n=6 for ΔP, t-test).
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Extended Data Fig. 9 | Analytical approximation of growth range and simulations agree. The heat map in b shows the relative error between analytical 
approximation (eq. 33) for the growth range and the growth range estimated with simulations. The heat map in a shows the analytical estimate of the 
growth range, and shows that the relative error in b is low when the growth range is below 20. Purple circle is proline auxotroph and yellow circle is 
tryptophan auxotroph. Panel a shows the same data as Fig. 4c.
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Extended Data Fig. 10 | Effect of density of cells on diffusion of molecules. a, Dependence of Deff and Deff

α
I

 on the cellular density. High cellular densities 
reduce the effective diffusion of molecules. In our microfluidic chambers cellular density is about 0.65 (that is fraction of the chamber’s volume occupied 
by cells). b, The growth range decreases with higher cellular densities. The analytically predicted growth range (eq. 33 in Supplementary Information) 
is shown as function of cellular density. The dashed lines indicate the predicted growth range at the experimentally measured cellular density. All other 
parameters are indicated in Supplementary Table 1.
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