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3Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia,

Canada V6T 1Z4

ADC, 0000-0001-8816-7670; MA, 0000-0003-0087-4819; SvV, 0000-0003-2532-483X

Microbes live in ever-changing environments where they need to adapt

their metabolism to different nutrient conditions. Many studies have

characterized the response of genetically identical cells to nutrient switches

in homogeneous cultures; however, in nature, microbes often live in spatially

structured groups such as biofilms where cells can create metabolic gradients

by consuming and releasing nutrients. Consequently, cells experience different

local microenvironments and vary in their phenotype. How does this pheno-

typic variation affect the ability of cells to cope with nutrient switches? Here,

we address this question by growing dense populations of Escherichia coli in

microfluidic chambers and studying a switch from glucose to acetate at the

single-cell level. Before the switch, cells vary in their metabolic activity:

some grow on glucose, while others cross-feed on acetate. After the switch,

only few cells can resume growth after a period of lag. The probability to

resume growth depends on a cells’ phenotype prior to the switch: it is highest

for cells cross-feeding on acetate, while it depends in a non-monotonic way on

the growth rate for cells growing on glucose.Our results suggest that the strong

phenotypic variation in spatially structured populations might enhance their

ability to cope with fluctuating environments.

1. Introduction
Environmental conditions are constantly changing on Earth, and a central pre-

requisite for any lifeform is the ability to cope with these fluctuations.

Microorganisms living in, e.g. the soil or the animal gut, experience strong fluc-

tuations in the quantity and quality of nutrients in their environment. To deal

with these fluctuations, microorganisms have evolved a large variety of

mechanisms for adapting their metabolism to new nutrient conditions [1].

Recent studies have shown that genetically identical cells can vary in the time

they need to adapt to the same nutrient switch (lag time) and often a fraction

of cells cannot adapt at all [2–8]. This heterogeneity in response is primarily

due to phenotypic differences among cells at the time of the switch, for

instance, in their protein levels or metabolic fluxes [2–9]. For example, the ability

of Escherichia coli cells to switch from growth on glucose to growth on lactose

depends on how many proteins of the lactose pathway the cells have at the

time of the switch [8]. Similarly, their ability to switch from growth on glucose

to growth on a gluconeogenic carbon source (e.g. acetate) depends on their gluco-

neogenic flux at the time of the switch [2]. Whenever cells share a homogeneous

environment, differences in protein levels andmetabolic fluxes are mainly due to

stochastic fluctuations in their gene expression [10,11].

Homogeneous environments are likely a special case in nature because

many bacteria live in dense spatially structured groups, such as biofilms and

microcolonies [12]. The high densities in these groups (up to thousand times
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higher than in batch cultures) allow cells to modify their local

microenvironment with the secretion and uptake of com-

pounds [13,14]. Consequently, cells at different locations

adapt to different microenvironments and vary in their gene

expression and metabolic fluxes [1,15–22]. In spatially struc-

tured populations, cells thus differ in phenotype both due to

stochastic fluctuations in gene expression (as in homogeneous

cultures) and due to physiological adaptation to different local

microenvironments. As a result, structured populations have

more phenotypic variation than homogeneous populations.

Phenotypic variation can have important consequences for

the ability of a population to adapt to environmental changes

[23]. Adapting to new environmental conditions can be time

consuming or even impossible for cells due to energy or

resource limitations [3,24]. If cells differ in their phenotypes,

due to either stochastic gene expression or adaptation to local

microenvironments, some of them might have an increased

ability to grow in the new conditions. As a result, the population

as a whole can resume growth faster after the environment

changes unexpectedly [11,23–25]. The higher degree of pheno-

typic variation in structured populations might thus have

important consequences for the ability of these populations to

cope with fluctuating environments.

Whilemuch is known about the response of cells to nutrient

changes inhomogeneous environments like batch cultures, little

is known about their response in structured populations. How

quickly do bacteria inside a structured population respond to

changes in the environment? How heterogeneous is their

response? Here, we addressed these questions by growing

dense populations ofE. coli inmicrofluidicdevices and studying

how they cope with a nutrient switch from glucose to acetate.

2. Results and discussion

2.1. Subpopulations specialize in different metabolic

activities in spatially structured populations
We grew E. coli cells inside microfluidic chambers that host

about 1000 individuals in closely packed two-dimensional

populations (figure 1a). The chambers open on one side into

a flow channel where nutrients are supplied (figure 1a). This

set-up allows us to switch nutrients, in our case from glucose

to acetate, in a tightly controlled manner. We characterized

the phenotype of each cell inside the population by measuring

their growth rate and the expression of two metabolic genes:

ptsG, a high-affinity glucose importer expressed when glucose

concentrations are low [26–28], and acs, a gene involved in

acetate metabolism expressed when catabolite repression (i.e.

inhibition of catabolism of carbon sources other than glucose)

is released [27,29,30].

Gene expression was measured using plasmid-based

transcriptional reporters, as this allows for non-destructive

single-cell measurementswithin amicrofluidic set-up. Despite

their utility, such reporters have potentially three limitations.

First, plasmid copy number variation could lead to overesti-

mate the variation in gene expression between cells.

However, previous work has shown that for most promoters

copy number variation of the reporter plasmids we used is

negligible compared to variation in transcriptional activity

[31,32]. Second, because (fluorescent) proteins have long life-

times, fluorescent intensities in cells do not only depend on

current, but also on past, transcriptional activity. Third,

transcriptional reporters cannot give any insight into post-

translational regulation that plays an important role in regulat-

ing metabolic activity [16]. As a result, transcriptional

reporters cannot give direct information about a cell’s current

metabolic fluxes. However, they give information about a

cell’s metabolic potential, i.e. about the pathways that the

cell expresses. This allows identification of subpopulations of

cells that have specialized on different metabolic tasks [27,33].

In previous work, we showed that when glucose is sup-

plied at low concentration in the flow channel (800 mM), the

combined metabolic activity of the cells creates strong nutrient

gradients along the depth of the chamber [34]. The local micro-

environment varies over a length scale of a few cell lengths,

and, as a result, the average phenotype of the cells changes

with the depth in the chamber. Cells form distinct subpopu-

lations that specialize in different metabolic pathways: close

to the chamber opening, where glucose is abundant, cells

partly ferment glucose to acetate [35,36]; deeper in the

chamber, where glucose becomes growth-limiting, cells grow

progressively slower and start to express ptsG (figure 1a,b); at

the very back of the chamber, where glucose is nearly depleted,

cells are released from catabolite repression and express acs,

which allows them to grow on the acetate excreted by cells at

the front (figure 1a,b). Although we only measured variation

in the growth rate and acs and ptsG expression, cells likely

varied in many other aspects of their phenotype.

In this study, we investigate how these structured popu-

lations respond to a nutrient switch from glucose to acetate.

We hypothesized that cells consuming acetate before the

switch would be able to continue growing without any lag

after the switch, while cells consuming glucose before the

switch would vary in their lag time depending on their

pre-switch phenotype. To test these hypotheses, we first let

cells stably form the metabolic gradients by growing cells

on a medium with a low concentration of glucose (800 mM).

Subsequently, we switched to a medium with a high con-

centration of acetate (30 mM) as the sole carbon source.

We followed the population for 38 h after the switch and

quantified the response of the single cells.

2.2. Only specific subpopulations can resume growth

after the gluconeogenic switch
Out of a total of about 14 000 cells (in 15 chambers), only 237

cells (1.7%) could grow after a switch to acetate (figure 2a;

electronic supplementary material, movies S1–S4). For

these 237 cells, the time required to resume growth (lag

time) varied substantially. A total of 69 cells could continue

to grow without any lag and most of these cells (63) clustered

in the back of the chamber, where they were likely already

adapted to consuming acetate (figure 2a,b). The remaining

168 cells had a broad distribution of lag times with a

median of 4.1 h (2.4–5.8 h interquartile range), though the

lag time could be as long as 25.5 h (figure 2a).

Cells that grewafter the switchwere locatedeitherat thevery

back of the chamber or between a depth of around 15–30 mm

(figure 2b). Using cluster analysis, we found that we could accu-

rately separate these two groups of cells using a threshold depth

of 38.5 mm (figure 3a). We analysed the phenotypes of cells that

could growpost-switch for each of these clusters (back and front

of the chamber) separately. Cells that could grow post-switch in

the back of the chamber expressed acs and grew slowly on acet-

ate before the switch, while cells that could grow post-switch in
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the front of the chamberdidnot express acsand ptsG andgrewat

high, but non-maximal, rates on glucose (0.4, m, 0.87 h21,

figure 3b). All other cells were generally unable to grow after

the switch (figure 3b).

2.3. Gene regulatory responses are rapid and

heterogeneous
Cells varied not only in their ability to grow after the switch but

also in their gene regulatory response: cells near the chamber

opening turned on acs expression rapidly after the switch,

while most cells at intermediate depths did not turn on acs

expression even after several hours of exposure to acetate

(figure 4). One hour post-switch, there is a distinct pattern in

the chamber: cells near the opening and in the back express

acs, while cells in the middle do not (figure 4). Considering the

GFP maturation time (approx. 20 min), cells near the chamber

opening turned on acs expressionwithinminutes after depletion

of glucose, consistent with previous observations in batch cul-

ture [37]. Notably, a large fraction of cells that expressed acs

post-switch could not switch to growth on acetate (figure 2b),

consistent with the fact that acs expression is a necessary but

not a sufficient requirement for growth on acetate [30,37].

2.4. Only cells actively growing on acetate can continue

growing throughout the nutrient switch
According to our hypothesis, cells that consume acetate pre-

switch should not lag. Yet a substantial fraction of cells in the

back of the chamber did lag or could not resume growth at
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Figure 1. Emergent nutrient gradients create phenotypic variation. (a) Cells form closely packed monolayers of about 1000 cells in microfluidic chambers that open

on one side into a flow channel. When a low concentration (800 mM) of glucose is supplied, cells create metabolic gradients as they consume glucose and release
metabolites. As a result, growth rates and gene expression change with depth. The false-colour image shows in magenta expression level of ptsG (expressed when

glucose becomes limiting), and in green acs (expressed when catabolite repression is released) superimposed on the phase-contrast image. (b) Cells vary in their

expression of ptsG (magenta), acs (green) and growth rate (blue). For each chamber, we calculated the average gene expression and growth rate (both measured at

the single-cell level) as a function of depth. Lines show the mean value and shaded areas the 95% confidence interval over 15 chambers. Single-cell measurements

were averaged over the chamber width and over a moving window with a depth of 3 mm. (Online version in colour.)
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Figure 2. Cell that can grow after the switch to acetate reside at specific depths. (a) Cells that can grow post-switch vary strongly in their lag time after a switch

from the glucose gradient to high amounts of acetate. Data of all 15 chambers (approx. 14 000 cells) were pooled together. Top: histogram of lag times; 29% of

cells can continue growing without interruption, the other cells lag for 0.3–25.5 h. Bottom: each horizontal line represents a single chamber, and each cross

indicates the time when a cell resumes growth. Points for lag times of 0 h and greater than 9 h have a horizontal offset to minimize overlap. (b) Cells that

can grow post-switch are located either in the back of the chamber or at a depth of 15–30 mm. Left: the location of all cells that can grow post-switch is

marked with large dots, and the colour indicates their lag time. Small grey dots show the location of all other cells (all 15 chambers shown together). Right:

histogram of the depth at which cells can grow post-switch. (Online version in colour.)
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all. What distinguishes the few cells that continue growing

with no lag? A possible explanation is that these cells are

more adapted to growth on acetate before the switch then

the rest. Using logistic regression, we confirmed this hypoth-

esis: cells that continue growing have higher pre-switch

growth rates and acs expression compared to cells that do

lag or that cannot resume growth (electronic supplementary

material, figure S1 and tables S1 and S2). Moreover, there is

a strong synergistic effect between high growth rates and

high acs expression: cells that have a high growth rate and

high acs expression have a very high probability to continue

growing without lag. Taken together, these findings are con-

sistent with our hypothesis that cells that grow on acetate

before the switch can continue growing after the switch,

while cells that are not fully adapted to growth on acetate

can grow only after a lag phase or not at all.

2.5. Cells growing post-switch have higher acs

expression and growth rate than their neighbours
Neighbouring cells often differ strongly in their ability to

grow after the switch to acetate; what is different between

the cells that can grow after the switch and their neighbours

that cannot? Although neighbouring cells experience

approximately the same microenvironment, they can differ

in their phenotype because of stochastic gene expression.

We thus compared the phenotype of all cells that can grow

(with or without lag) after the switch to acetate to the average

phenotype of their neighbours (cells within 2 mm). Cells

that can grow post-switch cluster in two distinct regions

of the chamber (back and front of the chamber, figure 3a)

that differ strongly in their average phenotype. We thus

analysed these regions separately, as potentially different
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Figure 3. Cell that can grow post-switch come from distinct phenotypic subpopulations. (a) Cells that could grow post-switch were classified based on their location

in the chamber into two groups, one in the back (depth less than 38.5 mm, orange) and one in the front of the chamber (blue), using k-means clustering. The data
of all 15 chambers are shown together. (b,c) The two groups have distinct phenotypes: the subpopulation in the front (blue) is characterized by high, but non-

maximal, growth rates and low acs expression; the subpopulation in the back (orange) is characterized by intermediate growth rates and high acs expression. The

pstG expression is generally higher for cells in the back, but there is considerable overlap between the two groups. Coloured dots indicate phenotype (growth rate

and log10(acs) in (b) or log10( ptsG) in (c) of each cell that can grow post-switch). Background shading shows the distribution of phenotypes of all cells in the

population. (Online version in colour.)
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Figure 4. After the nutrient switch, acs is expressed rapidly, but not by all cells. (a) Cells in the front of the chamber, but not those in the middle, rapidly express acs after

a switch from glucose to acetate. The percentage of cells expressing acs (acs. 13.5, see Material and methods) is shown as a function of depth and time after the switch

and depth. Data from all 15 chambers were pooled together. (b) False-colour images of a single chamber at four time points; acs expression is shown in green, ptsG

expression in magenta. Brightness and contrast were adjusted for both colours separately but were not changed between time points. (Online version in colour.)
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factors are important in determining whether a cell can

grow after the switch.

We found that cells that could grow post-switch have

distinct pre-switch phenotypes compared to their neighbours,

but these traits are not the same for the two regions. In the back

of the chamber, cells that could grow post-switch had higher

acs and ptsG expression and grew faster than their neighbours

(figure 5a). This result is consistent with our hypothesis that

exposure to acetate before the switch increases a cell’s chance

to grow after the switch. In the front, cells that could grow

after the switch have lower acs and ptsG expression and

higher growth rates than their neighbours (figure 5b). To

understand this result, we have to consider that all cells

move towards the chamber opening and that, due to differ-

ences in friction, the speed of movement varies strongly even

between neighbouring cells. As a result, streams of relatively

fast-moving cells regularly form [38]. Most cells that can

resume growth are located outside of these fast streams, yet

their neighbours can be in these streams and thus have protein

expression levels that reflect the microenvironment of regions

deeper in the chamber (where acs and ptsG expression levels

are higher).

2.6. Duration of lag only weakly correlates with the

pre-switch phenotype
The cells that stopped and resumed growth displayed a wide

distribution of lag times (figure 2a). Can we predict how long

cells lag from their pre-switch phenotype? To answer this ques-

tion, we investigated the relation between lag time and

pre-switch phenotype (acs, ptsG and growth rate) using partial

correlation analysis. Lag time weakly correlates with the ptsG

expression for cells in the back (with cells expressing more

ptsG having a longer lag time) and with the growth rate for

cells in the front (with cells growing faster having a shorter

lag time; electronic supplementary material, figure S2). How-

ever, both correlations are very weak (r2 , 0.11), suggesting

that the time required for physiological adaptation is largely

independent of the phenotypes we measured.

2.7. The behaviour of distinct subpopulations can

explain population response
In summary, the ability of cells to cope with a switch from

glucose to acetate depends on their pre-switch acs expression

and the growth rate. Although phenotypes vary continuously

between cells, we identified distinct phenotypic classes that

can capture most of the variation between cells (figures 2

and 3). We grouped cells based on their growth rate and

acs expression, and calculated the probability of cells to

grow post-switch in each group ( ptsG expression does not

affect these probabilities; electronic supplementary material,

figure S3). We inferred the most probable metabolic activity

of cells in each group based on previously published work

(figure 6b).

We found that cells with the highest probability to resume

growth were likely growing on acetate before the switch

(class v, 9–12%), followed by cells that were growing at

high, but non-maximal, rates on glucose (class ii, 5%,

figure 6). Cells that were likely starved for carbon (class iv)

that were growing slowly on glucose (class i), or fermenting

glucose to acetate (class iii), all had very low (less than 1%)

probabilities to grow on acetate after the switch (figure 6).

We will now discuss these results in the context of previous

studies on the glucose–acetate switch.

We found that most cells expressing acs before the switch

(classes iv and v, figure 6) stopped growing completely after

the switch to acetate. acs expression is required for catabolism

of acetate and energy production, but it is insufficient for

anabolic activity (and thus growth), which requires the gluco-

neogenic pathway and glyoxylate bypass [30,37]. Previous

studies have shown that the expression of the glyoxylate

pathway can take several hours [37]. Therefore, cells that

did not express the glyoxylate bypass before the switch, for

example, because they used small amounts of remaining glu-

cose or other secreted metabolites (e.g. succinate [30]) for

anabolic activities, would likely lag for several hours. Pre-

vious studies have also shown that cells with insufficient

gluconeogenic flux cannot resume growth after a switch to

acetate [2]. Therefore, cells that use glucose or are starved
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for acetate might not be able to resume growth at all after the

switch, because they have insufficient gluconeogenic flux.

Altogether, results from previous studies might explain

why only few cells that express acs are able to grow after

the switch: these are cells that express the gluconeogenic

pathways and the glyoxylate bypass.

We found that, for cells consuming glucose before the

switch, the probability for post-switch growth depends on

the cell’s growth rate in a non-monotonic way: cells with

fast, but not maximal, growth rates (class ii) can grow after

the switch to acetate, while very fast (class iii) and very

slow (class i) growing cells cannot. How can we explain

this non-monotonic dependence of the switching probability

on the growth rate? According to previous studies, high

growth rates (and high glycolytic activities) imply low gluco-

neogenic fluxes. Thus, the fastest growing cells should have

the lowest probability to grow on acetate [2,9]. But why can

very slow growing cells not make the switch? These slow

growing cells were under catabolite repression before the

switch, as they did not express acs, and they likely had low

metabolic fluxes and energy reserves. It is thus conceivable

that these cells run out of energy before catabolite repression

is relieved, which prevents them from switching to growth on

acetate. This could also explain why this whole subpopu-

lation could not turn on acs expression after the switch

(figure 4). Some support for this hypothesis comes from a

previous study in Lactococcus lactis, where it was shown

that catabolite repression can prevent cells from switching

from growth on glucose to growth on cellobiose [5].

Overall, only a fraction of cells in our spatially structured

populations could grow after the switch to acetate. For all

phenotypic classes, this fraction never exceeds 12%, while in

a previous study using batch cultures up to 60% of cells

could switch from growth on glucose to growth on acetate

[2]. This discrepancy might arise from differences between

strains or growth media, or might be due to a fundamental

difference in the growth environment: spatially structured

populations have a hundred to a thousand times higher cell

densities than a typical batch culture. In these dense popu-

lations, various physical and biochemical interactions can

occur between cells that cannot occur in batch cultures

[13,14]. These include physical forces between cells [39,40]

and the secretion of low amounts of metabolites that might

affect growth [13,14]. Our study suggests that all these inter-

actions might be essential in determining the response to

changing environments of cells living in biofilms and colonies.

3. Conclusion
We found that a cell’s ability to cope with a nutrient switch,

specifically a switch from glucose to acetate, depends strongly

on its pre-switch phenotype. The ability of clonal populations

to grow on the new nutrient thus depends on the amount

of phenotypic variation within the population. We have

shown that phenotypic variation is enhanced in dense spatially

structured populations because cells can collectively create

heterogeneity in the environment through the uptake and

release of compounds. Large heterogeneity in the environment

generates a large variety of cell phenotypes that might not

occur in batch cultures, but that could be relevant in natural

colonies and biofilms. As a result, structured populations

might be more able to cope with unexpected environmental

fluctuations than homogeneous populations.

We expect our findings to be relevant beyond the glucose–

acetate switch in E. coli: in nature, manymicroorganisms live in

dense, structured populations, where a wide variety of pheno-

types are likely to arise. The degree and type of phenotypic

variation that arises depends both on environment factors,

like the nutrients available, and on biotic factors, like the
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numbers and schematic on the right. Abbreviations: med, intermediate growth rate; max, maximum growth rate; na, no cells exist in this group. (b) Schematic

of the inferred metabolic activity of cells in the different classes based on their observed phenotype and previously published work. Cells in classes (i) and (ii) both

respire glucose but differ in their growth rate (slow/intermediate and fast, respectively); cells in class (iii) ferment glucose to acetate; cells in class (iv) are likely

nutrient starved and cells in class (v) respire acetate. The thickness of arrows indicates the growth rate of cells. (c) Location of the different phenotypic classes in

space, colours correspond to those in (b). Pale yellow circles indicate cells with unknown growth rate; most of these are located close to the chamber opening and

likely belong to classes (ii) or (iii). Cells that could grow post-switch are encircled. The chamber shown is the same as in figure 1a.
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cellular density and the metabolites excreted. This variation

could be advantageous for the population when the

environment changes, especially when a subpopulation of

cells already expresses the metabolic pathways needed to

grow in the new environment. However, if no subpopulations

express relevant metabolic pathways before the switch, there

could be no advantage of phenotypic variation. Theoretical

models could potentially predict the behaviour of phenotypi-

cally different cells in response to environmental changes.

Recently, several models have been developed to study nutri-

ent switches in homogeneous environments [9,41,42], and it

would be interesting to extend these models in future work

to include the effects of phenotypic variation in the population.

Taken together, our results show that it is essential to

study microorganisms directly in structured populations to

understand how they behave in natural, ever-changing,

environments. Our study offers a set of ideas and methods

that will help to make progress in this direction. Ultimately,

understanding how microorganisms respond to environ-

mental changes will help us to understand and control

natural communities and to engineer synthetic communities

for specific purposes.

4. Material and methods

4.1. Strains and plasmids
All experiments were done with E. coli MG1655 carrying the low
copy number pSV66-acs-gfp-ptsG-rfp plasmid, which contains a
GFPmut2 transcriptional reporter for acs and a turboRFP
transcriptional reporter for ptsG [34].

4.2. Media and growth conditions
Cells were grown in M9 medium (47.76 mM Na2HPO4, 22.04 mM
KH2PO4, 8.56 mM NaCl and 18.69 mM NH4Cl) supplemented
with 1 mM MgSO4, 0.1 mM CaCl2, 50 mg ml21 kanamycin (to
select for plasmid maintenance) and 0.1% of Tween-20 (Polysor-
bate-20, to reduce sticking of cells to the sides of microfluidic
devices), all from Sigma-Aldrich. Thismediumwas supplemented
with carbon sources as described below. Overnight cultures were
started from a single colony from an LB agar plate and grown in
M9 supplemented with 10 mM glucose and 5% LB at 378C in a
shaking incubator.

4.3. Microfluidic devices and experiments
The microfluidic devices consist of a series of chambers of 40 mm
wide, 60 mm deep and 0.76 mm high that open on one side into a
long (�2 cm) flow channel of 100 mm width and 23 mm height.
The small height of the chambers ensures that cells grow in a
monolayer. Moulds for the microfluidic devices were fabricated
from SU8 photoresist on silicon wafers using a two-layer photo-
lithography process (Microresist, Berlin). Microfluidic devices
were manufactured from polydimethylsiloxane (Sylgard 184) as
described in [34]. The devices were filled with culture medium
using a pipette first to wet the channels. An overnight culture
of cells was concentrated by centrifugation and loaded into
each flow channel by pipetting, and cells were pushed into the
side chambers. Subsequently, the inlets of the flow channels
were connected via tubing (Microbore Tygon S54HL, ID
0.76 mm, OD 2.29 mm, Fisher Scientific) to 50 ml syringes, and
media flowed continuously at 0.5 ml h21 using syringe pumps
(NE-300, NewEra Pump Systems).

Cells were first grown in 10 mM glucose until they had filled
the chambers (�18 h). Subsequently, the medium was switched

to 800 mM glucose for 9 h before switching to 30 mM acetate
for 38 h. Growth media were switched by manual switching
tubing between syringes. We calculated that it takes about
18 min for the media to change in the flow channel after connect-
ing the tubing to a new syringe and confirmed this by observing
how cell length trajectories changed after the switch. We thus set
the time of the switch at 18 min after the time where we
physically changed the tubing.

4.4. Microscopy
Time-lapse microscopy was done using a fully automated Olym-
pus IX81 inverted microscope, using a 100� NA1.3 oil-phase
objective (Olympus) and an ORCA-flash 4.0 v2 sCMOS camera
(Hamamatsu). For fluorescent images, a X-Cite120 120-Watt
high pressure metal halide arc lamp (Lumen Dynamics) was
used along with the Chroma N49002 (GFP) and N49008 (RFP) fil-
ters. The focus was maintained using the Olympus Z-drift
compensation system, and the microscope was controlled with
the CellSens software (Olympus). A microscope incubator (Life
imaging services) maintained the sample at 378C.

4.5. Data acquisition
To measure the pre-switch phenotype, we started imaging 2 h
before switching to acetate. At this time, cells had been exposed
to the low glucose medium for 7 h and were fully adapted to the
emergent metabolic gradients (in preliminary experiments, we
established that this process takes about 3–4 h). We imaged the
population in phase contrast (to measure biomass), GFP (acs
expression) andRFP (ptsG expression) taking an image every 6 min.

4.6. Image analysis
Time-lapse movies were analysed using a combination of Schnitz-
cell [43], Vanellus (Daan Kiviet, https://github.com/daankiviet/
vanellus), Ilastik [44] and customized scripts in Matlab (version
2018b). Movies were registered to compensate for stage movement
and cropped to the region of the growth chambers.

4.7. Cell segmentation and tracking
Cells were segmented using supervised machine learning (with
Ilastik). Segmentation was done on the superposed phase-contrast
and fluorescence images. Cell tracking was done using a custom
build algorithm that estimates the movement of cells between
two subsequent images with optical flow and uses this to predict
the location of cells in the subsequent frame [45]. For all cells that
could grow after the switch to acetate, we manually corrected
the lineage tracking using an adapted version of Schnitzcell [43].
For all other cells, no manual correction was done.

4.8. Gene expression levels
Fluorescent images were deconvolved using the Lucy–Richard-
son method and background corrected as x ¼ (I 2 D)/(BG2

D), where I is the uncorrected intensity, D the dark count and
BG the background intensity measured in the flow channel.
The expression levels of acs and ptsG were estimated for each
cell by masking the corrected fluorescent images using the cell-
segmentation mask and calculating the average pixel intensity
in the GFP and RFP channels, respectively.

4.9. Single-cell growth rates
Single-cell growth rates (m) are defined as the elongation rate
of cells: l(t) ¼ l(0) . em�t and estimated as the slope of the linear
regression of the log-transformed cell length. The quality of
each fit was estimated using the reduced chi-squared value:
X2 ¼ 1=ðN � 1ÞSiðlp � liÞ

2 , where N is the number of time
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points over which the regression is done, lp is the length
predicted by the linear regression and li is the measured
cell length.

We manually corrected the tracking data for all cells that
could grow after the switch. For these cells, we measured
growth rates by fitting a time window of five to seven time
points (24–36 min) ending 6 min before the nutrient switch. If
a cell was born shortly before the nutrient switch, i.e. if less
than five time points were available for fitting its growth rate,
we used for the first time points the length of the mother cell
(lmother) corrected for asymmetric length division between the
focal cell (lcell)and its sister (lsister): lcell=ðlcell þ lsisterÞ � lmother; we
also directly calculated the growth rate of the mother cell just
before division, compared this estimate with the one described
above and assigned to the focal cell the growth rate with the
highest fit quality.

For cells that did not grow after the switch, we automatically
corrected tracking mistakes by cutting length trajectories when
lengths increased by more than 18% or decreased by more
than 15% between two frames (this corresponds to jmj .

1.7 h21). We then performed multiple growth rate fits using
time windows of different lengths (N ¼ 4–11 frames) at all
times between 90 and 0 min before the switch. We computed
the fits and iteratively compared the quality of the new fit with
the best previous candidate; the new fit was considered better
if X2

new , a � X2
old, where a ¼ f1 if Nnew ¼ Nold; 1.25 if Nnew .

Nold; 0.8 if Nnew , Noldg. Visual inspection of these fits suggested
that fits over longer time windows were better even if they had a
slightly higher X2; the factor a takes this into account. Finally, if
no fit had X2

, 1023, we considered the growth rate to be
unknown (this threshold was set based on visual inspection).
This was the case for 22% of the cells, mostly located close to
the chamber opening.

4.10. Identification of cells that could grow after

the switch
We identified cells that could grow after the switch to acetate
using a combination of automated and manual screening: cells
were automatically flagged if their length increased after the
switch by 15% relative to the length at the time of the switch
and were subsequently manually screened. Owing to imperfec-
tions in the automated tracking algorithm, some starting cells
could not be identified automatically. Therefore, we additionally
identified all cells that could grow post-switch by visually
inspecting the time-lapse movies. Of the 237 cells that could
grow after the switch, we detected 43% with both methods,
22% only with automatic screening and 35% only with
manual screening.

4.11. Lag time measurement
We considered cells to exit lag phase when they resumed growth,
i.e. when they started elongating again. To reduce noise in the
growth rate estimates, we first smoothed the log-transformed
cell length using a 2-h time window using the rlowess (robust
local regression) option of the MatLab smooth function. Sub-
sequently, we estimated growth rates as the slope of the linear
regression over a moving widow of five time points (24 min),
starting at 6 min after the nutrient switch.

The time at which cells exited lag was taken as the first time
where their growth rate exceeded 0.02 h21 and remained above
this value for at least 75% of the time points during the next
3 h. If a cell exited lag close to its next division (within 1 h), we
further required that at least one of its daughters’ growth rates
was higher than 0.02 h21 directly after birth. If cells divided
before exiting lag (n ¼ 54), we calculated the lag time of both
daughters and assigned the shortest one to the mother cell.

Finally, we assigned a lag time of zero to cells that had a
growth rate higher than 0.02 h21 at all times. Visual inspection
of all length and growth rate trajectories showed that these
thresholds could accurately determine the time when cell
elongation resumed.

4.12. Discretizing phenotypes into classes
In figures 3 and 5, we grouped cells that could grow post-switch
based on their depth in the chamber using k-means clustering
with two clusters (threshold depth was 38.5 mm). In figure 6,
we classified cells based on their phenotype: we discretized
gene expression in two classes (on/off) and growth rates in
four classes (slow/intermediate/fast/maximum) based on
fixed thresholds. We calculated the thresholds for gene
expression from the distribution of expression levels of all cells
within 15 mm of the chamber opening, which generally only
express acs and ptsG at background levels. Cells were considered
to have acs on if their expression level was 3 s.d. above the mean
of the background level (acs. 13.5); cells were considered to have
ptsG on if their expression level was 1 s.d. above themean (ptsG.

30.9). The difference between acs and ptsG reflects themuch higher
standard deviation in ptsG expression levels near the chamber
opening. The thresholds for classifying growth rates were calcu-
lated using k-means clustering with three clusters; the threshold
between fast and maximum was manually set based on visual
inspection. Cells were classified as growing at maximum (m.

0.87 h21), fast (0.40, m � 0.87 h21), intermediate (0.09, m �

0.40 h21), or slow (m � 0.09 h21) rate.

4.13. Statistical analysis
We only included chambers that were fully packed with cells
during the full observation window, based on visual inspection.
Our dataset consists of 15 chambers coming from two inde-
pendent flow-cells. Given the small number of starting cells per
chamber, we analysed cells from all chambers together.

Foreachphenotypic class,we estimated theprobability that cells
could grow post-switch. To calculate these probabilities, we con-
sidered that for 22% of the cells, the growth rate was unknown.
We thus calculated anupperand lower bound for theseprobabilities
as Pþ ¼ NG(acs, m)=NT(acs,m) and P� ¼ NG(acs,m)=NT(acs,m)þNU(acs),
where NG (acs, m) and NT(acs,m) are the number of cells that
can grow post-switch and the total number of cells with a
given acs expression and growth rate, and NU (acs) is the number
of cells with a given acs expression and unknown growth
rate. In figure 6, we report the central estimate and range:
P ¼ ðPþ þ P�Þ=2+ ðPþ � P�Þ=2.
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