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Summary

Biological richness is positively associated with the
rates of some metabolic processes performed by micro-
bial communities. It remains unclear, however, whether
these positive associations are a general feature of the
metabolic processes performed by microbial communi-
ties or whether they are specific to certain types of met-
abolic processes. For example, it was hypothesized that
the strength of any particular positive association
depends on how many different genotypes within a
microbial community perform the metabolic process of
interest (i.e. the ‘rarity hypothesis’). We tested the gener-
ality of these positive associations by measuring the
taxonomic richness, functional gene richness and rate
constants for 71 different metabolic processes across
30 independent microbial communities. We found that
both taxonomic and functional gene richness do indeed
tend to positively associate with the rates of metabolic
processes. In addition, we found that positive associ-
ations occur across a wide range of different environ-
mental conditions. Counter to the ‘rarity hypothesis’,
however, we did not detect a relationship between
the strengths of the positive associations and the rar-
ity of each metabolic process. Together, our data
provide empirical evidence that positive associations

with biological richness may indeed be a general fea-
ture of the metabolic processes performed by micro-
bial communities.

Introduction

Microbial communities perform metabolic processes that
provide important services to human society and our envi-
ronment. The ecological factors that control the rates of
particular metabolic processes, however, are not fully under-
stood. Biological richness (e.g. the number of functionally
different genotypes within a community) is one factor that
may be important (Bell et al., 2005; Duffy, 2009; Cardinale,
2011; Gravel et al., 2011; Peter et al., 2011; Bouvier et al.,
2012; Cardinale et al., 2012; Dell’Anno et al., 2012;
Hernandez-Raquet et al., 2013; Philippot et al., 2013;
Johnson et al., 2015a; Evans et al., 2017; Stadler et al.,
2017). Communities with higher biological richness are
more likely to contain genotypes that have direct or indirect
positive effects on the rate of a particular metabolic
process (Loreau et al., 2001; Balvanera et al., 2006;
Cardinale et al., 2006; Cardinale, 2011; Cardinale
et al., 2012; Tilman et al., 2014). These positive effects
may emerge as a consequence of several different ecolog-
ical mechanisms, including complementation, facilitation or
sampling effects (Loreau et al., 2001; Balvanera et al.,
2006; Cardinale et al., 2006; Cardinale, 2011; Cardinale
et al., 2012; Tilman et al., 2014). Complementation occurs
when two or more genotypes perform a particular meta-
bolic process but occupy partially- or non-overlapping
niche spaces, where each genotype performs the meta-
bolic process more effectively within its own niche space.
For example, one genotype might specialize at performing
the metabolic process in a planktonic state while the
other might specialize at performing the metabolic pro-
cess in a biofilm-associated state. The collection of
specialized genotypes could consequently attain faster
aggregate rates of the metabolic process than would
any single genotype. Facilitation occurs when the growth
or metabolic activities of genotypes that perform a particu-
lar metabolic process are stimulated by the presence of
other genotypes (e.g. the other genotype may consume or
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detoxify a growth-reducing metabolite). The sampling
effect is a probabilistic argument, which states that com-
munities with higher biological richness are more likely to
contain genotypes that bestow positive effects on the rate
of a particular metabolic process. This may result from the
presence of genotypes that perform the metabolic pro-
cess at faster rates or confer novel complementation or
facilitation effects. Counter to complementation and
facilitation, however, the sampling effect can also act in
the negative direction, where communities with higher
biological richness are also more likely to contain geno-
types that bestow negative effects on the rate of a par-
ticular metabolic process.

While positive associations between biological richness
and the rates of particular metabolic processes have been
observed (Bell et al., 2005; Cardinale, 2011; Gravel et al.,
2011; Peter et al., 2011; Bouvier et al., 2012; Cardinale
et al., 2012; Dell’Anno et al., 2012; Hernandez-Raquet
et al., 2013; Philippot et al., 2013; Johnson et al., 2015a;
Evans et al., 2017; Stadler et al., 2017), it remains unclear
whether these positive associations are a general feature
of the metabolic processes performed by microbial com-
munities. For example, while many studies have observed
positive associations between biological richness and
the rates of some metabolic processes (Bell et al.,
2005; Cardinale, 2011; Gravel et al., 2011; Peter et al.,
2011; Bouvier et al., 2012; Cardinale et al., 2012; Dell’Anno
et al., 2012; Hernandez-Raquet et al., 2013; Philippot et al.,
2013; Johnson et al., 2015a; Evans et al., 2017; Stadler
et al., 2017), other studies have not (Salonius, 1981;
Griffiths et al., 2001; Wertz et al., 2006; Szabó et al.,
2007; Peter et al., 2011; Pholchan et al., 2013; Graham
et al., 2014; Roger et al., 2016).

One possible explanation for why biological richness
may positively associate with the rates of only specific
types of metabolic processes is the ‘rarity hypothesis’
(Levine et al., 2011; Johnson et al., 2015a). Briefly, if only
a few genotypes perform a particular metabolic process
(i.e. a rare metabolic process), then differences or
changes in biological richness are more likely to have
measurable effects on the rate of that metabolic process
than if many genotypes perform that metabolic process,
thus leading to quantitatively stronger positive associa-
tions. This is because the set of possible complementa-
tion, facilitation and sampling effects are less likely to be
near saturation, and the addition or removal of genotypes
is therefore more likely to affect that metabolic process
(i.e. functional redundancy is low). In contrast, if many
genotypes perform a particular metabolic process (i.e. a
common metabolic process), then differences or changes
in biological richness are less likely to have measurable
effects on the rate of that metabolic process than if only a
few genotypes perform that metabolic process, thus lead-
ing to quantitatively weaker positive associations. This is

because the set of possible complementation, facilitation
and sampling effects are more likely to be near satura-
tion, and the addition or removal of genotypes is less
likely to affect the rate of that metabolic process
(i.e. functional redundancy is high). Importantly, the ‘rarity
hypothesis’ does not require the binary categorization of
metabolic processes as either rare or common, but
instead considers the magnitude of rarity or commonality
(i.e. the number of genotypes that contribute towards a
metabolic process or the amount of functional redun-
dancy related to that metabolic process). While the ‘rarity
hypothesis’ provides a plausible explanation, empirical
tests of the hypothesis remain limited to only a few types
and relatively small sets of metabolic processes
(e.g. Levine et al., 2011; Johnson et al., 2015a).

The goal of this study was twofold. First, we sought to
test whether positive associations between biological
richness and the rates of metabolic processes are gener-
ally observed across a large number of different meta-
bolic processes or whether they are specific to certain
types of metabolic processes. Second, we sought to test
the ‘rarity hypothesis’ (Levine et al., 2011; Johnson et al.,
2015a); namely, is the strength of any particular positive
association related to how many different genotypes
within a microbial community perform that particular met-
abolic process? To achieve these goals, we obtained
30 independent microbial communities from 30 different
wastewater treatment plants (WWTPs). We then mea-
sured taxonomic richness (Rt) and functional gene rich-
ness (Rf) using non-target DNA sequencing-based
approaches for each microbial community. We included
functional gene richness (Rf) in our analyses because
functional genes are likely responsible for providing many
complementation and facilitation effects. In parallel, we
measured the rate constants (k) for 71 different metabolic
processes for each microbial community using paralle-
lized batch assays. We next tested for associations
between taxonomic richness (Rt) or functional gene rich-
ness (Rf) and the rate constants (k) for each metabolic
process. Finally, we estimated the rarity of each meta-
bolic process and asked whether the strengths of the
positive associations are related to the rarity of each met-
abolic process.

Results

Associations between biological richness and the rates
of metabolic processes are generally positive in sign

Our first goal was to test whether associations between
biological richness and the rates of each metabolic pro-
cess are generally positive in sign across a large number
of different metabolic processes. To achieve this goal,
we measured observed taxonomic richness (Rt, obs)
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(Supporting Information, Table S1) and observed func-
tional gene richness (Rf, obs) (Supporting Information,
Table S1) along with the rate constants (k) for 71 different
metabolic processes (Supporting Information, Table S2)
across 30 independent microbial communities collected
from 30 different WWTPs. We then quantified the Spear-
man correlation coefficients (rSpearman) between observed
taxonomic richness (Rt, obs) or observed functional gene
richness (Rf, obs) and the rate constants (k) for each met-
abolic process (Supporting Information, Table S3). We
used the non-parametric Spearman rank correlation test
because 30 of the 71 metabolic processes have rate con-
stants (k) that significantly deviate from a normal distribu-
tion (Shapiro–Wilk test; P > 0.05) (Supporting
Information, Table S4), thus invalidating a central
assumption of parametric correlation tests (e.g. the Pear-
son correlation test). We note that our goal was not to
draw conclusions about any particular metabolic process;
the statistical significance of any individual Spearman
correlation coefficient (rSpearman) is therefore unimportant
for our statistical objective. Instead, our goal was to test
whether the distribution of Spearman correlation coeffi-
cients (rSpearman) across a large number of different meta-
bolic processes has a central tendency that significantly
deviates from zero towards the positive direction, which
would be expected if positive associations were indeed a
general feature of the metabolic processes performed by
microbial communities.
We found that the rate constants (k) for each metabolic

process vary substantially (1.6- to 28-fold for those with
all non-zero measurements) across the different microbial
communities (Fig. 1), which is an essential prerequisite
for our analyses (variation is required to observe an asso-
ciation). We further found that the central tendencies of
the Spearman correlation coefficients (rSpearman) for
observed taxonomic richness (Rt, obs) (Fig. 2A) and
observed functional gene richness (Rf, obs) (Fig. 2D) do
indeed significantly deviate from zero towards the positive
direction (two-sided Wilcoxon rank-sum test; P < 0.00001
for observed taxonomic richness [Rt, obs], P < 0.002 for-
observed functional gene richness [Rf, obs]). For exam-
ple, observed taxonomic richness (Rt, obs) has positive
Spearman correlation coefficients (rSpearman) with the
rate constants (k) for 55 out of the 71 (e.g. 77%) differ-
ent metabolic processes (Fig. 2A and Supporting Infor-
mation, Table S3). This qualitative outcome also occurs
when using extrapolated measures (Chao1 or ACE) of
taxonomic richness (Rt, Chao1, Rt, ACE) or functional gene
richness (Rf, Chao1, Rf, ACE) (two-sided Wilcoxon rank-
sum test; P < 0.00001 for Chao1 and ACE taxonomic
richness [Rt, Chao1, Rt, ACE], P < 0.001 for Chao1 and
ACE functional gene richness [Rf, Chao1, Rf, ACE])
(Fig. 2). Interestingly, we note that taxonomic richness
tends to generate stronger positive associations than

functional gene richness. While this outcome has been
observed before, this tendency may not be a general
phenomenon but instead may be linked to the methodol-
ogy used to quantify functional richness (Johnson et al.,
2015a; 2015b). Regardless, our data suggests that posi-
tive associations do indeed generally occur across a
large number of different metabolic processes.

One potential limitation of our analyses above is that
we only tested whether the central tendencies of the
Spearman correlation coefficients (rSpearman) significantly
deviate from a singular value of zero. We therefore per-
formed a randomization test where we randomly re-
labelled the rate constants (k) for each metabolic process
to a different microbial community and recalculated the
Spearman correlation coefficients (rSpearman, rand)
(Supporting Information, Fig. S1). We then tested
whether the Spearman correlation coefficients generated
from the original data (rSpearman) (Fig. 2) significantly devi-
ate from the Spearman correlation coefficients generated
from the randomly re-labelled data (rSpearman, rand)
(Supporting Information, Fig. S1). As expected, the
central tendencies of the Spearman correlation coeffi-
cients generated from the randomly re-labelled data
(rSpearman, rand) do not significantly deviate from zero,
regardless of whether we used measures of taxonomic
richness (Rt) or functional gene richness (Rf) (two-sided
Wilcoxon rank-sum test; P > 0.3) (Supporting Informa-
tion, Fig. S1). Moreover, the central tendencies of the
Spearman correlation coefficients generated from the
original data (rSpearman) are all significantly greater than
the central tendencies of the Spearman correlation coef-
ficients generated from the randomly re-labelled data
(rSpearman, rand), again regardless of whether we used
measures of taxonomic richness (Rt) or functional gene
richness (Rf) (two-sided Wilcoxon rank-sum test;
P < 0.02) (Fig. 2 and Supporting Information, Fig. S1).
This provides further support that positive associations
do indeed generally occur across a large number of dif-
ferent metabolic processes.

Positive associations occur across a wide range of
different environmental conditions

We next asked whether positive associations between
biological richness and the rates of metabolic processes
occur across a wide range of different environmental con-
ditions. More specifically, we previously (see above) ana-
lysed the rate constants (k) for 71 different metabolic
processes under a single standardized environmental
condition, while here we analyse the rate constants (k)
for a single metabolic process (i.e. the consumption of a
single carbon substrate) in the presence of 23 different
environmental conditions (different environmental condi-
tions include a different pH, a different concentration of
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sodium chloride or the presence of a different stress-
inducing chemical). We found that the central tendencies
of the Spearman correlation coefficients (rSpearman)
between taxonomic richness (Rt) or functional gene rich-
ness (Rf) and the rate constants (k) for a single metabolic
process across the different environmental conditions
again significantly deviate from zero towards the positive
direction (two-sided Wilcoxon rank-sum test; P < 0.05)
(Fig. 3). This supports the argument that positive associa-
tions between biological richness and the rates of meta-
bolic processes are generalizable across a wide range of
different environmental conditions.

No observed relationship between association strength
and rarity

Our second goal was to test the ‘rarity hypothesis’
(Levine et al., 2011; Johnson et al., 2015a); namely, the
strengths of the positive associations between biological
richness and the rates of metabolic processes should be
greater for rare metabolic processes than for common
metabolic processes. We first tested this hypothesis
using a dilution-to-extinction approach to estimate the rar-
ity of each metabolic process, where we assumed that
the extent of dilution required for a metabolic process to
no longer be measurable provides a proxy estimate of its
rarity (Garland and Lehman, 1999). We report the dilutions
at which each of the 71 different metabolic processes were
no longer measurable in Supporting Information, Table S5
(values are for one randomly selected microbial commu-
nity). When we tested the specific hypothesis that the
extents of dilution negatively associate with the magni-
tudes of the Spearman correlation coefficients (rSpearman)

between taxonomic richness (Rt) or functional gene rich-
ness (Rf) and the rate constants (k) for each metabolic
process (smaller extents of dilution indicate greater rarity),
we did not detect a statistically significant negative associ-
ation (Spearman rank correlation test; P > 0.2) (Fig. 4).
Thus, counter to the ‘rarity hypothesis’ (Levine et al., 2011;
Johnson et al., 2015a), we have no statistical evidence for
a relationship between the rarity of a particular meta-
bolic process and the strength of its positive association
between biological richness and the rates of that meta-
bolic process.

We next tested the ‘rarity hypothesis’ using an alterna-
tive estimate of rarity: the lag-time before each metabolic
process is measurable. Here we assumed that the lag-
time provides an alternative proxy estimate of its rarity.
We report the lag-times before each of the 71 different
metabolic processes became measurable in Supporting
Information, Table S6. We found that the lag-times are
significantly negatively associated with the dilutions at
which each ecosystem function was no longer measur-
able (Spearman rank correlation test; P < 0.001) (Fig. 5),
which would be expected if both approaches do indeed
contain substantial information about the rarity of each
metabolic process. However, when we tested the specific
hypothesis that the lag-times positively associate with the
magnitudes of the Spearman correlation coefficients
(rSpearman) between taxonomic richness (Rt) or functional
gene richness (Rf) and the rate constants (k) for each
metabolic process (longer lag-times indicate greater rar-
ity), we again did not detect a statistically significant
positive association (Spearman rank correlation test;
P > 0.99) (Fig. 6). Thus, similar to the outcome from the
dilution-to-extinction approach, we have no statistical

Fig. 1. Rate constants (k) for each metabolic process (n = 71). Symbols are the measurements for each microbial community. Metabolic pro-
cesses are ordered in columns from left to right in accordance with the ordering in Supporting Information, Table S8. Each metabolic process is
the consumption of a different carbon substrate.
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evidence for a relationship between the rarity of a par-
ticular metabolic process and the strength of its positive
association between biological richness and the rates of
that metabolic process.

Discussion

We found that across a large number of different meta-
bolic processes, biological richness tends to positively
associate with the rates of those metabolic processes
(Fig. 2). This was true regardless of whether we used
measures of taxonomic richness (Rt) or functional gene
richness (Rf) or whether we used observed or extrapo-
lated (Chao1 or ACE) measures of biological richness
(Fig. 2). Moreover, we also observed these positive asso-
ciations for a single metabolic process across a wide
range of different environmental conditions (Fig. 3). Thus,
our data lend credence to the suggestion that positive
associations with biological richness may indeed be a

general feature of the metabolic processes performed by
microbial communities. Additionally, the pervasiveness of
positive associations suggests that functional redundancy
within WWTP microbial communities in particular may be
lower than sometimes assumed, as excessive functional
redundancy should indicate near-saturation of biodiver-
sity effects and consequently obscure these positive
associations (Johnson et al., 2015a). Together, our data
suggest that promoting and maintaining biological rich-
ness may be particularly important for optimizing the
rates of metabolic processes performed by WWTP micro-
bial communities. Moreover, assessing differences or
changes in biological richness may be an effective strat-
egy to predict the functional performance of WWTPs.

While we observed positive associations between bio-
logical richness and the rates of metabolic processes,
our data do not provide statistical support for the ‘rarity
hypothesis’ (Figs. 4 and 6). We emphasize, however, that
the absence of evidence supporting a hypothesis is not

Fig. 2. Spearman correlation coefficients (rSpearman) for the associations between taxonomic richness (Rt) or functional gene richness (Rf) and the
rate constants (k) of each metabolic process (n = 71). Each metabolic process is the consumption of a different carbon substrate. Richness mea-
surements include A., observed taxonomic richness (Rt, obs); B., Chao1 taxonomic richness (Rt, Chao1); C., ACE taxonomic richness (Rt, ACE); D.,
observed functional richness (Rf, obs); E., Chao1 functional richness (Rf, Chao1); or F., ACE functional richness (Rf, ACE). The dashed vertical lines
indicate a Spearman correlation coefficient (rSpearman) of zero. The P values indicate that the central tendencies of the Spearman correlation coef-
ficients (rSpearman) significantly deviate from a value of zero. The horizontal arrows indicate the direction of the deviation of the central tendencies
from a value of zero.
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the same as evidence against the hypothesis. One
aspect of our experimental design that could obscure the
predicted effects of rarity is that growth and substrate
consumption were coupled during our analyses. We
diluted the microbial communities prior to measuring the
rates of each metabolic process, which provided opportu-
nity for the preferential growth of certain genotypes over
the time-scale of the experimental analyses. If preferen-
tial growth were strong, then a few genotypes with espe-
cially large metabolic rates may have rapidly increased in
frequency. This could modify the native genotype fre-
quencies and consequently disrupt the native comple-
mentation and facilitation effects, thus obscuring the
expected relationship between rarity and the strengths of
the positive associations. Indeed, in our previous study
where we did observe the expected relationship between
rarity and the strengths of the positive associations
(Johnson et al., 2015a), we used very low substrate con-
centrations and types of substrates that were unlikely to

support substantial growth. This resulted in the approxi-
mate uncoupling of growth from substrate consumption,
which likely helped preserve the native genotype fre-
quencies and maintain more of the native complementa-
tion and facilitation effects present within those microbial
communities. An alternative explanation is that functional
redundancy is generally low within our microbial com-
munities, which could mask the effect of rarity on the
associations between biological richness and the rates
of metabolic processes.

We believe that our results are potentially generaliz-
able beyond WWTP microbial communities. It is plausible
that positive relationships between biological richness
and the rates of metabolic processes may be particularly
weak in environments with high immigration rates, as
high immigration rates may introduce new genotypes that
increase biological richness but have no positive effects
on the rates of particular metabolic processes. Impor-
tantly, WWTPs have this feature (high immigration rates),

Fig. 3. Spearman correlation coefficients (rSpearman) for the associations between taxonomic richness (Rt) or functional richness (Rf) and the rate
constants (k) of a single metabolic process in the presence of different environmental conditions (n = 23). Richness measurements include A.,
observed taxonomic richness (Rt, obs); B., Chao1 taxonomic richness (Rt, Chao1); C., ACE taxonomic richness (Rt, ACE); D., observed functional
richness (Rf, obs); E., Chao1 functional richness (Rf, Chao1); or F., ACE functional richness (Rf, ACE). The dashed vertical lines indicate a Spearman
correlation coefficient (rSpearman) of zero. The P values indicate that the central tendencies of the Spearman correlation coefficients (rSpearman) sig-
nificantly deviate from a value of zero. The horizontal arrows indicate the direction of the deviation of the central tendencies from a value of zero.
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yet we still observed statistically significant positive asso-
ciations for a large number of metabolic processes (Fig. 2)
and across a wide range of different environmental condi-
tions (Fig. 3). Thus, we believe that our conclusions are
conservative with regards to their generalizability to other
types of microbial communities and environmental condi-
tions. In conclusion, our data suggest that biological rich-
ness may indeed be an important determinant of the rates
of many different types of metabolic processes performed
by microbial communities.

Experimental procedures

Microbial communities

We obtained 30 independent microbial communities, each
of which was collected from a different WWTP located in
Switzerland (29 WWTPs) or Austria (1 WWTP) (Supporting
Information, Table S7). We collected the microbial commu-
nities using a consistent protocol described elsewhere
(Helbling et al., 2012). Briefly, we collected a single 1 l liquid

sample directly from the aeration basin of each WWTP in a
2 l glass bottle. We then transported the sample back to the
laboratories at the Swiss Federal Institute of Aquatic Sci-
ence and Technology (Eawag) and began preparing and
analysing the sample (see below) ~2.5 h after collection
from the WWTP.

Sample preparation

Prior to measuring biological richness or the rates of met-
abolic processes, we first homogenized each microbial
community to minimize any artefacts that may arise from
sampling small volumes from spatially structured micro-
bial communities, such as the microbial communities
residing within WWTPs. To achieve this, we used a
method described previously for WWTP microbial com-
munities (Victorio et al., 1996). Briefly, we transferred 2 ×
40 ml aliquots of each microbial community from the 2 l
glass bottle into 2 × 50 ml screw-top plastic tubes. We
next mixed each aliquot with a laboratory homogenizer
for 10 s, centrifuged the aliquots at 2800g, and discarded

Fig. 4. Spearman correlation coefficients (rSpearman) plotted against the extent of dilution required for each metabolic process to no longer be
measurable. The Spearman correlation coefficients (rSpearman) are for the associations between taxonomic richness (Rt) or functional richness
(Rf) and the rate constants (k) of each metabolic process, where each metabolic process is the consumption of a different carbon substrate. Rich-
ness measurements include A., observed taxonomic richness (Rt, obs); B., Chao1 taxonomic richness (Rt, Chao1); C., ACE taxonomic richness
(Rt, ACE); D., observed functional richness (Rf, obs); E., Chao1 functional richness (Rf, Chao1); or F., ACE functional richness (Rf, ACE).
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the supernatants. We then suspended the remaining
cells in 40 ml of 0.85% NaCl and repeated the centrifuga-
tion/suspension for a total of three times to remove resid-
ual nutrients. Finally, we transferred the cell suspensions
to new 50 ml screw-top plastic tubes and measured the
optical density at 590 nm [OD590] using a spectrophotom-
eter. For each microbial community, we used one 40 ml
cell aliquot for measuring taxonomic richness and func-
tional gene richness (described below) and the other
40 ml cell aliquot for measuring the rates of each meta-
bolic process (described below).

Isolation of genomic DNA for biodiversity measurements

We centrifuged one of the 40 ml cell aliquots for each
microbial community at 4700g for 5 min, removed the
supernatant and suspended the remaining cells in 1 ml of
IF-A solution (Biolog, Hayward, CA). IF-A solution is a cell
suspension solution that contains no carbon substrate but
does contain the tetrazolium dye used to measure the
rates of respiration coupled to each metabolic process via
the GEN III MicroPlate™ (Biolog, Hayward, CA) (described
below). This creates the same conditions that we used to
measure the rates of each metabolic process; hence, if
some genotypes were disturbed by the IF-A solution when
we measured the rates of each metabolic process, they
would also be disturbed prior to measuring taxonomic rich-
ness and functional gene richness. After 30 min of incuba-
tion in IF-A solution, we centrifuged the cells again at

4700g for 5 min, discarded the supernatant and stored the
samples at −20�C until further processing.

We used a conventional phenol-chloroform-based
method to isolate genomic DNA from the cell samples as
described elsewhere (Johnson et al., 2015b). We quanti-
fied the masses of isolated genomic DNA using a Qubit
Fluorometer with the Qubit dsDNA High Sensitivity Assay
Kit (Thermo Fisher Scientific, Waltham, MA). We then
sent the isolated genomic DNA on dry ice to the Quanti-
tative Genomics Facility (QGF) at ETH Zürich in Basel,
Switzerland for sequencing.

Non-target genomic DNA sequencing

At the QGF, genomic DNA was fragmented with an E220
focused ultrasonicator (Covaris, Woburn, MA) and libraries
with an insert size of 400–700 base pairs were prepared
using the KAPA Hyper Prep Kit (Applied Biosystems,
Waltham, MA). Sequencing was performed with an
Illumina HiSeq 2500 system (Illumina, San Diego, CA)
with paired-end sequencing (PE125). The sequencing
effort was designed to generate ~10 million sequence
reads per sample.

Sequence analysis

We used Kraken (version 0.10.5) with the provided
MiniKraken database (version 141208) (Wood and Salzberg,
2014; Lindgreen et al., 2016) to assign the DNA sequence
reads obtained from the genomic DNA sequencing effort
to taxonomic identities. We only considered exact matches
to the Kraken-Genbank database using fully default
parameters (Wood and Salzberg, 2014; Lindgreen et al.,
2016). We considered all DNA sequence reads for taxo-
nomic identification rather than restricting the analyses to
16S-rDNA sequence reads. We used the EBI Metage-
nomics (EMG) tool (https://www.ebi.ac.uk/metagenomics/)
(Mitchell et al., 2016) and the associated InterProScan
tool (Jones et al., 2014) to assign the protein-encoding
DNA sequence reads obtained from the genomic DNA
sequencing effort to putative functional groups using
fully default parameters. Putative functional annotations
are obtained based on matches to the InterPro data-
base (Finn et al., 2017), which returns a single func-
tional annotation based on identified putative protein
domains. We define a functional group as the single
functional annotation returned by InterProScan (Jones
et al., 2014), and we refer to these functional groups as
putative because they are bioinformatics hypotheses.
We also used the EMG tool to merge paired ends, perform
quality control (including trimming of adapter sequences
and masking of non-coding sequences) and predict coding
sequences (Mitchell et al., 2016). All metadata, raw geno-
mic DNA sequence reads and MD5checksums are publicly

Fig. 5. Relationship between the extent of dilution required for each
metabolic process to no longer be measurable and the lag time
(median value among all 30 microbial communities) before each
metabolic process was measurable. The extent of dilution is signifi-
cantly and negatively associated with the lag time (Spearman rank
correlation test; P < 0.001).
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available at the EBI metagenomics database under acces-
sion number PRJEB13232.

Quantifying taxonomic richness and functional gene
richness

We quantified taxonomic richness (Rt) from the DNA
sequence reads that were assigned to taxonomic iden-
tities in Kraken (Wood and Salzberg, 2014; Lindgreen
et al., 2016) (i.e. we discarded all DNA sequence reads
that did not match perfectly to the Kraken-Genbank
database). We quantified functional gene richness (Rf)
from the protein-encoding DNA sequence reads that
were assigned a putative functional annotation in EMG
(Mitchell et al., 2016) (i.e. we discarded all protein-
encoding DNA sequence reads that did not match to
the InterPro database when using default parameters).
We rarefied all sequence datasets to the single sequence
dataset containing the smallest number of taxonomically
identified DNA sequence reads or functional group
assigned protein-encoding sequence reads. We quantified

observed taxonomic richness (Rt, obs) as the observed
number of unique taxonomic identities per rarified
sequence dataset. We quantified observed functional
gene richness (Rf, obs) as the observed number of
unique functional groups per rarified sequence dataset
as described elsewhere (Johnson et al., 2015a,b). We
additionally quantified Chao1 extrapolated richness
(Rt, Chao1, Rf, Chao1) and ACE extrapolated richness
(Rt, ACE, Rf, ACE) (Chao, 1987; Chao et al., 1993;
Hughes et al., 2001; Gotelli and Ellison, 2004) from
the rarified sequence datasets. All the reported taxo-
nomic richness (Rt) and functional gene richness (Rf)
measurements are the mean values from 100 independent
rarefactions. We performed rarefaction and calculated tax-
onomic richness (Rt) and functional gene richness (Rf) in
the R environment (R Development Core Team, 2011)
using functions from the vegan (Oksanen et al., 2013) and
fossil (Vavrek, 2011) packages. We report all the taxo-
nomic richness (Rt) and functional gene richness (Rf) mea-
surements for each microbial community in Supporting
Information, Table S1.

Fig. 6. Spearman correlation coefficients (rSpearman) plotted against the lag times (median values among all 30 microbial communities) before each
metabolic process was measurable. The Spearman correlation coefficients (rSpearman) are for the associations between taxonomic richness (Rt) or
functional richness (Rf) and the rate constants (k) of each metabolic process, where each metabolic process is the consumption of a different carbon
substrate. Richness measurements include A., observed taxonomic richness (Rt, obs); B., Chao1 taxonomic richness (Rt, Chao1); C., ACE taxonomic
richness (Rt, ACE); D., observed functional richness (Rf, obs); E., Chao1 functional richness (Rf, Chao1); or F., ACE functional richness (Rf, ACE).
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Quantifying the rates of each metabolic process

For this study, we define the rate of a metabolic process
as the rate of respiration coupled to the consumption of a
particular carbon substrate. In total, we quantified the
rates of respiration coupled to the consumption of 71 dif-
ferent carbon substrates in parallel using the GEN III
MicroPlate™ (Biolog, Hayward, CA) (hereafter referred to
as a plate). These plates consist of 96 wells, each of
which contains a different growth-limiting carbon sub-
strate (n = 71), a single growth-limiting carbon substrate
in the presence of a different environmental condition
(n = 23; different environmental conditions include a dif-
ferent pH, a different concentration of sodium chloride or
the presence of a different stress-inducing chemical), or
a negative or positive control (n = 2) (summarized in Sup-
porting Information, Table S8). The wells also contain a
tetrazolium dye, which is oxidized during respiration and
can be used to measure the rate of respiration coupled to
the consumption of each carbon substrate as per the
manufacturer’s recommendations (Biolog, Hayward, CA).

To perform these analyses, we used the second 40 ml
cell aliquot from each microbial community. We first
adjusted the OD590 of the cell suspension to 0.08 by
diluting the sample in 0.85% NaCl solution as proposed
elsewhere (Yang et al., 2011). We then added 100 μl of
cell suspension to each well of a plate and measured the
OD590 over time using an Eon plate reader (BioTek,
Luzern, Switzerland) with the following protocol: continu-
ous linear shaking, constant temperature at 25 �C and
OD590 measurements every 0.5 h for 36 h for a total of
72 measurements. In parallel, we measured the back-
ground signal by filling three plates with 0.85% NaCl
solution that did not contain any cells. We next calculated
the mean value of these background measurements for
each well and subtracted the mean values from all the
measurements that contained cells. We then calculated
the respiration rate constant (h−1) coupled to the con-
sumption of each carbon substrate in the MATLAB envi-
ronment (MathWorks, Natick, MA) using the following
equation:

OD590 tð Þ=OD590 0ð Þekt

where k is the respiration rate constant (h−1), OD590(0) is
the OD590 measurement at time zero and OD590(t) is the
OD590 measurement at time t (h). We note here that the
cumulative amount of tetrazolium dye that is oxidized
via respiration is measured at OD590 as per the manu-
facturer’s recommendations (Biolog, Hayward, CA). This
measure is therefore not an exact measure of cumula-
tive respiration activity because it is, to some extent,
confounded with cell density. However, the presence of
this confounding factor should not affect the qualitative

outcome or main conclusions of this study, as both cumu-
lative respiration activity and cell density are coupled to
the metabolic process of substrate consumption.

We estimated the respiration rate constant (k) coupled
to the consumption of each carbon substrate using a
sliding time-window analysis. Briefly, we performed a
linear regression between the natural log-transformed
OD590 measurements across six consecutive time-points,
calculated the slope and Pearson correlation coefficient
(rPearson), and repeated the analysis at increments of one
time-point. We then identified the maximum slope that also
had a statistically significant (P < 0.05) Pearson correlation
coefficient (rPearson) and used this value as a measure of
the respiration rate constant (k). We report the measured
rate constants (k) for each metabolic process and for each
microbial community in Supporting Information, Table S2.

Estimating the rarity of each metabolic process

We first estimated the rarity of each metabolic process
using a dilution-to-extinction approach as described else-
where (Garland and Lehman, 1999). The main assump-
tion here is that rare metabolic processes should require
less extensive dilution of a microbial community to no
longer be measurable than common metabolic processes
(Garland and Lehman, 1999). The extent of dilution at
which respiration activity is no longer measurable there-
fore provides a proxy estimate of the rarity of each met-
abolic process. To perform these measurements, we
selected a single microbial community at random for
analysis and serially diluted the community with 85%
NaCl solution at 10-fold increments up to 10−8. We
selected one microbial community at random to main-
tain objectivity in the analysis and adhere to the underly-
ing assumptions of our statistical approaches. We next
added each dilution of the microbial community to a
separate plate as described above, incubated the plates
for 48 h at 25�C, and measured the OD590 at 48 h.
Finally, we identified the extent of dilution required for
each metabolic process to no longer be measurable
after 48 h of incubation (i.e. an OD590 measurement that
is not statistically larger than the background signal).
We report the extent of dilution required for each meta-
bolic process to no longer be measureable in Support-
ing Information, Table S5.

We additionally estimated the rarity of each metabolic
process based on the lag-time between inoculation of
the plates and the onset of measurable respiration activ-
ity. The main assumption here is that rare metabolic pro-
cesses should have longer lag-times than common
metabolic processes. This is because fewer genotypes
perform rare metabolic processes, and they are therefore
more likely to be at lower initial abundances. Thus, the
lag-time before each metabolic process is measurable
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provides an alternative proxy estimate of the rarity of
each metabolic process. We calculated the lag-time in
the MATLAB environment (MathWorks, Natick, MA)
using the following equation (Swinnen et al., 2004):

tlag = t OD590 > thresholdð Þ

where tlag is the lag-time and the threshold value was
set to 0.2 based on visual inspection of the OD590 pro-
files. More specifically, we first calculated the mean of
the first five OD590 measurements for each metabolic
process and subtracted the background signal (see
above). We next repeated the analysis at increments of
one time point and estimated tlag as the time point when
the background-subtracted OD590 measurement was
statistically larger than the threshold value. We report
the lag-times for each metabolic process in Supporting
Information, Table S6.

Association tests

We used the Shapiro–Wilk test to test whether the rate
constants (k) for each metabolic process across the
30 microbial communities significantly deviate from a
normal distribution. This was indeed the case for a large
proportion of the metabolic processes (Shapiro–Wilk
test; P < 0.05) (Supporting Information, Table S4). We
therefore used non-parametric statistical tests for all of
our analyses. While non-parametric statistical tests are
valid for distributions that deviate from normality, they
can also have lower sensitivity and higher false negative
rates than their parametric analogues. We therefore
took caution when interpreting statistical outcomes that
do not significantly deviate from null hypotheses. We
used the Spearman rank correlation test to test for asso-
ciations between taxonomic richness (Rt) or functional
gene richness (Rf) and the rate constants (k) for meta-
bolic processes. We used the Wilcoxon rank-sum test to
test whether the central tendencies of the Spearman
correlation coefficients (rSpearman) significantly deviate
from zero or from the central tendencies of randomly re-
labelled datasets (see the main text for details regarding
random re-labelling). We performed all statistical tests in
the R environment using core functions (R Development
Core Team, 2011).
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Figure S1. Spearman correlation coefficients (r) for the
associations between taxonomic or functional richness
and the randomly re-labelled rates of each metabolic pro-
cess (n = 71). Each metabolic process is the
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consumption of a different carbon substrate, and the rate
constants (k) for each metabolic process were randomly
re-labelled to a different microbial community. Richness
measurements include A., observed taxonomic richness;
B., Chao1 taxonomic richness; C., ACE taxonomic rich-
ness; D., observed functional richness; E., Chao1 func-
tional richness; or F., ACE functional richness. The
dashed vertical lines indicate a Spearman correlation
coefficient of zero.
Table S1. Measured taxonomic richness (Rt) or func-
tional gene richness (Rf ) for each microbial community.
Table S2. Measured rate constants (h − 1) (k) for each
metabolic process or environmental condition.

Table S3. Spearman correlation coefficients (rSpearman)
and P values between taxonomic richness (Rt) or func-
tional gene richness (Rf) and the rate constants (k) for
each metabolic process or environmental condition.
Table S4. Shapiro–Wilk tests (P values) for the rate con-
stants (k) for each metabolic process or environmental
condition.
Table S5. Dilutions at which each metabolic process was
no longer measurable.
Table S6. Lag time (h) before each metabolic process
became measurable.
Table S7. Locations of each WWTP.
Table S8. Summary of the GEN III MicroPlate™.
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